Composant

Last updated

In point-set topology, the composant of a point p in a continuum A is the union of all proper subcontinua of A that contain p. If a continuum is indecomposable, then its composants are pairwise disjoint. The composants of a continuum are dense in that continuum.

Related Research Articles

Algebraic geometry Branch of mathematics

Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.

Topology Branch of mathematics that deals with continuous deformations

In mathematics, topology is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

Real line Line that represents the real numbers

In mathematics, the real line, or real number line is the line whose points are the real numbers. That is, the real line is the set R of all real numbers, viewed as a geometric space, namely the Euclidean space of dimension one. It can be thought of as a vector space, a metric space, a topological space, a measure space, or a linear continuum.

In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X → X* such that the complement of X in X* consists of a single point, typically denoted ∞. The map c is a Hausdorff compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any topological space, a much larger class of spaces.

Dyadic rational

In mathematics, a dyadic rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also have applications in weights and measures and in musical time signatures.

In mathematics, a sober space is a topological space X such that every irreducible closed subset of X is the closure of exactly one point of X: that is, every irreducible closed subset has a unique generic point.

Indecomposable or indecomposability may refer to any of several subjects in mathematics:

Bronisław Knaster

Bronisław Knaster was a Polish mathematician; from 1939 a university professor in Lwów and from 1945 in Wrocław.

In mathematics, a pointed set is an ordered pair where is a set and is an element of called the base point, also spelled basepoint.

Zoltán "Zoli" Tibor Balogh was a Hungarian-born mathematician, specializing in set-theoretic topology. His father, Tibor Balogh, was also a mathematician. His best-known work concerned solutions to problems involving normality of products, most notably the first ZFC construction of a small Dowker space. He also solved Nagami's problem, and the second and third Morita conjectures about normality in products.

In mathematics, a locally compact group is a topological group G for which the underlying topology is locally compact and Hausdorff. Locally compact groups are important because many examples of groups that arise throughout mathematics are locally compact and such groups have a natural measure called the Haar measure. This allows one to define integrals of Borel measurable functions on G so that standard analysis notions such as the Fourier transform and spaces can be generalized.

Contractible space

In mathematics, a topological space X is contractible if the identity map on X is null-homotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within that space.

Abstract analytic number theory is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the emphasis is on abstract asymptotic distribution results. The theory was invented and developed by mathematicians such as John Knopfmacher and Arne Beurling in the twentieth century.

Indecomposable continuum

In point-set topology, an indecomposable continuum is a continuum that is indecomposable, i.e. that cannot be expressed as the union of any two of its proper subcontinua. In 1910, L. E. J. Brouwer was the first to describe an indecomposable continuum.

In general topology, the pseudo-arc is the simplest nondegenerate hereditarily indecomposable continuum. The pseudo-arc is an arc-like homogeneous continuum, and played a central role in the classification of homogeneous planar continua. R.H. Bing proved that, in a certain well-defined sense, most continua in Rn, n ≥ 2, are homeomorphic to the pseudo-arc.

In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).

In mathematics, the lakes of Wada are three disjoint connected open sets of the plane or open unit square with the counterintuitive property that they all have the same boundary. In other words, for any point selected on the boundary of one of the lakes, the other two lakes' boundaries also contain that point.

The Vaught conjecture is a conjecture in the mathematical field of model theory originally proposed by Robert Lawson Vaught in 1961. It states that the number of countable models of a first-order complete theory in a countable language is finite or ℵ0 or 20. Morley showed that the number of countable models is finite or ℵ0 or ℵ1 or 20, which solves the conjecture except for the case of ℵ1 models when the continuum hypothesis fails. For this remaining case, Robin Knight has announced a counterexample to the Vaught conjecture and the topological Vaught conjecture. As of 2016, the counterexample has not been verified.

In the mathematical field of point-set topology, a continuum is a nonempty compact connected metric space, or, less frequently, a compact connected Hausdorff space. Continuum theory is the branch of topology devoted to the study of continua.

References