Compound of six decagonal prisms

Last updated
Compound of six decagonal prisms
UC40-6 decagonal prisms.png
Type Uniform compound
IndexUC40
Polyhedra6 decagonal prisms
Faces12 decagons,
60 squares
Edges180
Vertices120
Symmetry group icosahedral (Ih)
Subgroup restricting to one constituent5-fold antiprismatic (D5d)

This uniform polyhedron compound is a symmetric arrangement of 6 decagonal prisms, aligned with the axes of fivefold rotational symmetry of a dodecahedron.

Cartesian coordinates

Cartesian coordinates for the vertices of this compound are all the cyclic permutations of

(±√(τ−1/√5), ±2τ, ±√(τ/√5))
(±(√(τ−1/√5)−τ2), ±1, ±(√(τ/√5)+τ))
(±(√(τ−1/√5)−τ), ±τ2, ±(√(τ/√5)+1))
(±(√(τ−1/√5)+τ), ±τ2, ±(√(τ/√5)−1))
(±(√(τ−1/√5)+τ2), ±1, ±(√(τ/√5)−τ))

where τ = (1+√5)/2 is the golden ratio (sometimes written φ).

Related Research Articles

In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies.

<span class="mw-page-title-main">Step response</span> Time behavior of a system controlled by Heaviside step functions

The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory, step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time. The concept can be extended to the abstract mathematical notion of a dynamical system using an evolution parameter.

<span class="mw-page-title-main">Stopping time</span> Time at which a random variable stops exhibiting a behavior of interest

In probability theory, in particular in the study of stochastic processes, a stopping time is a specific type of “random time”: a random variable whose value is interpreted as the time at which a given stochastic process exhibits a certain behavior of interest. A stopping time is often defined by a stopping rule, a mechanism for deciding whether to continue or stop a process on the basis of the present position and past events, and which will almost always lead to a decision to stop at some finite time.

<span class="mw-page-title-main">Rhombidodecadodecahedron</span> Polyhedron with 54 faces

In geometry, the rhombidodecadodecahedron is a nonconvex uniform polyhedron, indexed as U38. It has 54 faces (30 squares, 12 pentagons and 12 pentagrams), 120 edges and 60 vertices. It is given a Schläfli symbol t0,2{52,5}, and by the Wythoff construction this polyhedron can also be named a cantellated great dodecahedron.

The Bayer designation Tau Hydrae is shared by two star systems in the equatorial constellation of Hydra. The two stars are separated by 1.74° in the sky.

In mathematics and probability theory, Skorokhod's embedding theorem is either or both of two theorems that allow one to regard any suitable collection of random variables as a Wiener process evaluated at a collection of stopping times. Both results are named for the Ukrainian mathematician A. V. Skorokhod.

<span class="mw-page-title-main">Compound of two icosahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of 2 icosahedra. It has octahedral symmetry Oh. As a holosnub, it is represented by Schläfli symbol β{3,4} and Coxeter diagram .

<span class="mw-page-title-main">Compound of five icosahedra</span> Polyhedral compound

The compound of five icosahedra is uniform polyhedron compound. It's composed of 5 icosahedra, rotated around a common axis. It has icosahedral symmetry Ih.

<span class="mw-page-title-main">Compound of five cuboctahedra</span> Polyhedral compound

In geometry, this uniform polyhedron compound is a composition of 5 cuboctahedra. It has icosahedral symmetry Ih.

<span class="mw-page-title-main">Compound of five truncated tetrahedra</span> Polyhedral compound

The compound of five truncated tetrahedra is a uniform polyhedron compound. It's composed of 5 truncated tetrahedra rotated around a common axis. It may be formed by truncating each of the tetrahedra in the compound of five tetrahedra. A far-enough truncation creates the compound of five octahedra. Its convex hull is a nonuniform snub dodecahedron.

<span class="mw-page-title-main">Compound of ten truncated tetrahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of 10 truncated tetrahedra, formed by truncating each of the tetrahedra in the compound of 10 tetrahedra. It also results from composing the two enantiomers of the compound of 5 truncated tetrahedra.

<span class="mw-page-title-main">Compound of five truncated cubes</span> Polyhedral compound

This uniform polyhedron compound is a composition of 5 truncated cubes, formed by truncating each of the cubes in the compound of 5 cubes.

<span class="mw-page-title-main">Compound of ten hexagonal prisms</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 10 hexagonal prisms, aligned with the axes of three-fold rotational symmetry of an icosahedron.

<span class="mw-page-title-main">Compound of six decagrammic prisms</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 6 decagrammic prisms, aligned with the axes of fivefold rotational symmetry of a dodecahedron.

<span class="mw-page-title-main">Compound of ten octahedra</span> Polyhedral compound

The compounds of ten octahedra UC15 and UC16 are two uniform polyhedron compounds. They are composed of a symmetric arrangement of 10 octahedra, considered as triangular antiprisms, aligned with the axes of three-fold rotational symmetry of an icosahedron. The two compounds differ in the orientation of their octahedra: each compound may be transformed into the other by rotating each octahedron by 60 degrees.

<span class="mw-page-title-main">Compound of twenty octahedra with rotational freedom</span> Polyhedral compound

The compound of twenty octahedra with rotational freedom is a uniform polyhedron compound. It's composed of a symmetric arrangement of 20 octahedra, considered as triangular antiprisms. It can be constructed by superimposing two copies of the compound of 10 octahedra UC16, and for each resulting pair of octahedra, rotating each octahedron in the pair by an equal and opposite angle θ.

<span class="mw-page-title-main">Compound of twelve pentagonal antiprisms with rotational freedom</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 12 pentagonal antiprisms. It can be constructed by inscribing one pair of pentagonal antiprisms within an icosahedron, in each of the six possible ways, and then rotating each by an equal and opposite angle θ.

The open-circuit time constant (OCT) method is an approximate analysis technique used in electronic circuit design to determine the corner frequency of complex circuits. It is a special case of zero-value time constant (ZVT) method technique when reactive elements consist of only capacitors. The zero-value time (ZVT) constant method itself is a special case of the general Time- and Transfer Constant (TTC) analysis that allows full evaluation of the zeros and poles of any lumped LTI systems of with both inductors and capacitors as reactive elements using time constants and transfer constants. The OCT method provides a quick evaluation, and identifies the largest contributions to time constants as a guide to the circuit improvements.


In mathematics, an N-topological space is a set equipped with N arbitrary topologies. If τ1τ2, ..., τN are N topologies defined on a nonempty set X, then the N-topological space is denoted by (X,τ1,τ2,...,τN). For N = 1, the structure is simply a topological space. For N = 2, the structure becomes a bitopological space introduced by J. C. Kelly.

In mathematics, the Hopf decomposition, named after Eberhard Hopf, gives a canonical decomposition of a measure space (X, μ) with respect to an invertible non-singular transformation T:XX, i.e. a transformation which with its inverse is measurable and carries null sets onto null sets. Up to null sets, X can be written as a disjoint union CD of T-invariant sets where the action of T on C is conservative and the action of T on D is dissipative. Thus, if τ is the automorphism of A = L(X) induced by T, there is a unique τ-invariant projection p in A such that pA is conservative and (I–p)A is dissipative.

References