Compound of two great retrosnub icosidodecahedra

Last updated
Compound of two great retrosnub icosidodecahedra
UC72-2 great retrosnub icosidodecahedra.png
Type Uniform compound
IndexUC72
Polyhedra2 great retrosnub icosidodecahedra
Faces40+120 triangles, 24 pentagrams
Edges300
Vertices120
Symmetry group icosahedral (Ih)
Subgroup restricting to one constituent chiral icosahedral (I)
3D model of a compound of two great retrosnub icosidodecahedra Compound of two great retrosnub icosidodecahedra.stl
3D model of a compound of two great retrosnub icosidodecahedra

The compound of two great retrosnub icosidodecahedra is a uniform polyhedron compound. It's composed of the 2 enantiomers of the great retrosnub icosidodecahedron.

Related Research Articles

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

In geometry, a snub polyhedron is a polyhedron obtained by performing a snub operation: alternating a corresponding omnitruncated or truncated polyhedron, depending on the definition. Some, but not all, authors include antiprisms as snub polyhedra, as they are obtained by this construction from a degenerate "polyhedron" with only two faces.

<span class="mw-page-title-main">Great snub icosidodecahedron</span> Polyhedron with 92 faces

In geometry, the great snub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U57. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices. It can be represented by a Schläfli symbol sr{52,3}, and Coxeter-Dynkin diagram .

<span class="mw-page-title-main">Great inverted snub icosidodecahedron</span> Polyhedron with 92 faces

In geometry, the great inverted snub icosidodecahedron (or great vertisnub icosidodecahedron) is a uniform star polyhedron, indexed as U69. It is given a Schläfli symbol sr{53,3}, and Coxeter-Dynkin diagram . In the book Polyhedron Models by Magnus Wenninger, the polyhedron is misnamed great snub icosidodecahedron, and vice versa.

<span class="mw-page-title-main">Small retrosnub icosicosidodecahedron</span> Uniform star polyhedron with 112 faces

In geometry, the small retrosnub icosicosidodecahedron (also known as a retrosnub disicosidodecahedron, small inverted retrosnub icosicosidodecahedron, or retroholosnub icosahedron) is a nonconvex uniform polyhedron, indexed as U72. It has 112 faces (100 triangles and 12 pentagrams), 180 edges, and 60 vertices. It is given a Schläfli symbol sr{⁵/₃,³/₂}.

<span class="mw-page-title-main">Great retrosnub icosidodecahedron</span> Uniform star polyhedron

In geometry, the great retrosnub icosidodecahedron or great inverted retrosnub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U74. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices. It is given a Schläfli symbol sr{32,53}.

<span class="mw-page-title-main">Compound of five cubes</span> Polyhedral compound

The compound of five cubes is one of the five regular polyhedral compounds. It was first described by Edmund Hess in 1876.

In geometry, a uniform polyhedron compound is a polyhedral compound whose constituents are identical uniform polyhedra, in an arrangement that is also uniform, i.e. the symmetry group of the compound acts transitively on the compound's vertices.

<span class="mw-page-title-main">Compound of twenty tetrahemihexahedra</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 20 tetrahemihexahedra. It is chiral with icosahedral symmetry (I).

<span class="mw-page-title-main">Compound of twenty octahedra</span> Polyhedral compound

The compound of twenty octahedra is a uniform polyhedron compound. It's composed of a symmetric arrangement of 20 octahedra. It is a special case of the compound of 20 octahedra with rotational freedom, in which pairs of octahedral vertices coincide.

<span class="mw-page-title-main">Compound of two great icosahedra</span> Polyhedral compound

In geometry, the compound of two great icosahedra is a uniform polyhedron compound. It's composed of 2 great icosahedra, in the same arrangement as in the compound of 2 icosahedra.

<span class="mw-page-title-main">Compound of two small stellated dodecahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of 2 small stellated dodecahedra, in the same arrangement as in the compound of 2 icosahedra.

<span class="mw-page-title-main">Compound of five great dodecahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of 5 great dodecahedra, in the same arrangement as in the compound of 5 icosahedra.

<span class="mw-page-title-main">Compound of five small stellated dodecahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of 5 small stellated dodecahedra, in the same arrangement as in the compound of 5 icosahedra.

<span class="mw-page-title-main">Compound of two great snub icosidodecahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of the 2 enantiomers of the great snub icosidodecahedron.

<span class="mw-page-title-main">Compound of five great rhombihexahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of 5 great rhombihexahedra, in the same vertex arrangement as the compound of 5 truncated cubes.

<span class="mw-page-title-main">Compound of six tetrahedra</span> Polyhedral compound

The compound of six tetrahedra is a uniform polyhedron compound. It's composed of a symmetric arrangement of 6 tetrahedra. It can be constructed by inscribing a stella octangula within each cube in the compound of three cubes, or by stellating each octahedron in the compound of three octahedra.

References