Conditional dependence

Last updated
A Bayesian network illustrating conditional dependence Conditional Dependence.jpg
A Bayesian network illustrating conditional dependence

In probability theory, conditional dependence is a relationship between two or more events that are dependent when a third event occurs. [1] [2] For example, if and are two events that individually increase the probability of a third event and do not directly affect each other, then initially (when it has not been observed whether or not the event occurs) [3] [4]

Contents

( are independent).

But suppose that now is observed to occur. If event occurs then the probability of occurrence of the event will decrease because its positive relation to is less necessary as an explanation for the occurrence of (similarly, event occurring will decrease the probability of occurrence of ). Hence, now the two events and are conditionally negatively dependent on each other because the probability of occurrence of each is negatively dependent on whether the other occurs. We have [5]

Conditional dependence of A and B given C is the logical negation of conditional independence . [6] In conditional independence two events (which may be dependent or not) become independent given the occurrence of a third event. [7]

Example

In essence probability is influenced by a person's information about the possible occurrence of an event. For example, let the event be 'I have a new phone'; event be 'I have a new watch'; and event be 'I am happy'; and suppose that having either a new phone or a new watch increases the probability of my being happy. Let us assume that the event has occurred – meaning 'I am happy'. Now if another person sees my new watch, he/she will reason that my likelihood of being happy was increased by my new watch, so there is less need to attribute my happiness to a new phone.

To make the example more numerically specific, suppose that there are four possible states given in the middle four columns of the following table, in which the occurrence of event is signified by a in row and its non-occurrence is signified by a and likewise for and That is, and The probability of is for every

EventProbability of event
0101
0011
0111

and so

EventProbability of event
0001
0101
0011
0001

In this example, occurs if and only if at least one of occurs. Unconditionally (that is, without reference to ), and are independent of each other because —the sum of the probabilities associated with a in row —is while

But conditional on having occurred (the last three columns in the table), we have

while

Since in the presence of the probability of is affected by the presence or absence of and are mutually dependent conditional on

See also

Related Research Articles

<span class="mw-page-title-main">Expected value</span> Average value of a random variable

In probability theory, the expected value is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would "expect" to get in reality.

<span class="mw-page-title-main">Probability</span> Branch of mathematics concerning chance and uncertainty

Probability is the branch of mathematics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an even is to occur. The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes are both equally probable; the probability of 'heads' equals the probability of 'tails'; and since no other outcomes are possible, the probability of either 'heads' or 'tails' is 1/2.

<span class="mw-page-title-main">Independence (probability theory)</span> When the occurrence of one event does not affect the likelihood of another

Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other.

<span class="mw-page-title-main">Naive Bayes classifier</span> Probabilistic classification algorithm

In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivity) of this assumption is what gives the classifier its name. These classifiers are among the simplest Bayesian network models.

<span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the [[expected value]]

In probability theory, the law of large numbers (LLN) is a mathematical theorem that states that the average of the results obtained from a large number of independent and identical random samples converges to the true value, if it exists. More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean converges to the true mean.

<span class="mw-page-title-main">Correlation</span> Statistical concept

In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are linearly related. Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the so-called demand curve.

In probability theory and statistics, two real-valued random variables, , , are said to be uncorrelated if their covariance, , is zero. If two variables are uncorrelated, there is no linear relationship between them.

A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.

In probability theory and statistics, the conditional probability distribution is a probability distribution that describes the probability of an outcome given the occurrence of a particular event. Given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability. The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable.

In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables. This contrasts with a conditional distribution, which gives the probabilities contingent upon the values of the other variables.

In information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative way of expressing probability, much like odds or log-odds, but which has particular mathematical advantages in the setting of information theory.

<span class="mw-page-title-main">Conditional independence</span> Probability theory concept

In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability without. If is the hypothesis, and and are observations, conditional independence can be stated as an equality:

In probability theory, the craps principle is a theorem about event probabilities under repeated iid trials. Let and denote two mutually exclusive events which might occur on a given trial. Then the probability that occurs before equals the conditional probability that occurs given that or occur on the next trial, which is

In statistics, the bias of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

In data mining and association rule learning, lift is a measure of the performance of a targeting model at predicting or classifying cases as having an enhanced response, measured against a random choice targeting model. A targeting model is doing a good job if the response within the target is much better than the baseline average for the population as a whole. Lift is simply the ratio of these values: target response divided by average response. Mathematically,

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson. The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume. It plays an important role for discrete-stable distributions.

<span class="mw-page-title-main">Conditional probability</span> Probability of an event occurring, given that another event has already occurred

In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) or occasionally PB(A). This can also be understood as the fraction of probability B that intersects with A, or the ratio of the probabilities of both events happening to the "given" one happening (how many times A occurs rather than not assuming B has occurred): .

In probability, weak dependence of random variables is a generalization of independence that is weaker than the concept of a martingale. A (time) sequence of random variables is weakly dependent if distinct portions of the sequence have a covariance that asymptotically decreases to 0 as the blocks are further separated in time. Weak dependence primarily appears as a technical condition in various probabilistic limit theorems.

References

    1. Introduction to Artificial Intelligence by Sebastian Thrun and Peter Norvig, 2011 "Unit 3: Conditional Dependence" [ permanent dead link ]
    2. Introduction to learning Bayesian Networks from Data by Dirk Husmeier [ permanent dead link ] "Introduction to Learning Bayesian Networks from Data -Dirk Husmeier"
    3. Conditional Independence in Statistical theory "Conditional Independence in Statistical Theory", A. P. Dawid" Archived 2013-12-27 at the Wayback Machine
    4. Probabilistic independence on Britannica "Probability->Applications of conditional probability->independence (equation 7) "
    5. Introduction to Artificial Intelligence by Sebastian Thrun and Peter Norvig, 2011 "Unit 3: Explaining Away" [ permanent dead link ]
    6. Bouckaert, Remco R. (1994). "11. Conditional dependence in probabilistic networks". In Cheeseman, P.; Oldford, R. W. (eds.). Selecting Models from Data, Artificial Intelligence and Statistics IV. Lecture Notes in Statistics. Vol. 89. Springer-Verlag. pp. 101–111, especially 104. ISBN   978-0-387-94281-0.
    7. Conditional Independence in Statistical theory "Conditional Independence in Statistical Theory", A. P. Dawid Archived 2013-12-27 at the Wayback Machine