Confirmatory blockmodeling

Last updated

Confirmatory blockmodeling is a deductive approach in blockmodeling, where a blockmodel (or part of it) is prespecify before the analysis, and then the analysis is fit to this model. When only a part of analysis is prespecify (like individual cluster(s) or location of the block types), it is called partially confirmatory blockmodeling. [1] :26–27

This is so-called indirect approach, where the blockmodeling is done on the blockmodel fitting (e.g., a priori hypothesized blockmodel). [2] :215

Opposite approach to the confirmatory blockmodeling is an inductive exploratory blockmodeling. [1] :27

Related Research Articles

<span class="mw-page-title-main">Research design</span> Overall strategy utilized to carry out research

Research design refers to the overall strategy utilized to answer research questions. A research design typically outlines the theories and models underlying a project; the research question(s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. A strong research design yields valid answers to research questions while weak designs yield unreliable, imprecise or irrelevant answers.

A latent variable model is a statistical model that relates a set of observable variables to a set of latent variables.

<span class="mw-page-title-main">Stepwise regression</span> Method of statistical factor analysis

In statistics, stepwise regression is a method of fitting regression models in which the choice of predictive variables is carried out by an automatic procedure. In each step, a variable is considered for addition to or subtraction from the set of explanatory variables based on some prespecified criterion. Usually, this takes the form of a forward, backward, or combined sequence of F-tests or t-tests.

In statistics, confirmatory factor analysis (CFA) is a special form of factor analysis, most commonly used in social science research. It is used to test whether measures of a construct are consistent with a researcher's understanding of the nature of that construct. As such, the objective of confirmatory factor analysis is to test whether the data fit a hypothesized measurement model. This hypothesized model is based on theory and/or previous analytic research. CFA was first developed by Jöreskog (1969) and has built upon and replaced older methods of analyzing construct validity such as the MTMM Matrix as described in Campbell & Fiske (1959).

Social network analysis (SNA) software is software which facilitates quantitative or qualitative analysis of social networks, by describing features of a network either through numerical or visual representation.

Psychometric software is software that is used for psychometric analysis of data from tests, questionnaires, or inventories reflecting latent psychoeducational variables. While some psychometric analyses can be performed with standard statistical software like SPSS, most analyses require specialized tools.

Anuška Ferligoj is a Slovenian mathematician, born August 19, 1947, in Ljubljana, Slovenia, whose specialty is statistics and network analysis. Her specific interests include multivariate analysis, cluster analysis, social network analysis, methodological research of public opinion, analysis of scientific networks. She is Fellow of the European Academy of Sociology.

<span class="mw-page-title-main">Stochastic block model</span>

The stochastic block model is a generative model for random graphs. This model tends to produce graphs containing communities, subsets of nodes characterized by being connected with one another with particular edge densities. For example, edges may be more common within communities than between communities. Its mathematical formulation has been firstly introduced in 1983 in the field of social network by Paul W. Holland et al. The stochastic block model is important in statistics, machine learning, and network science, where it serves as a useful benchmark for the task of recovering community structure in graph data.

In statistics, confirmatory composite analysis (CCA) is a sub-type of structural equation modeling (SEM). Although, historically, CCA emerged from a re-orientation and re-start of partial least squares path modeling (PLS-PM), it has become an independent approach and the two should not be confused. In many ways it is similar to, but also quite distinct from confirmatory factor analysis (CFA). It shares with CFA the process of model specification, model identification, model estimation, and model assessment. However, in contrast to CFA which always assumes the existence of latent variables, in CCA all variables can be observable, with their interrelationships expressed in terms of composites, i.e., linear compounds of subsets of the variables. The composites are treated as the fundamental objects and path diagrams can be used to illustrate their relationships. This makes CCA particularly useful for disciplines examining theoretical concepts that are designed to attain certain goals, so-called artifacts, and their interplay with theoretical concepts of behavioral sciences.

<span class="mw-page-title-main">Blockmodeling</span> Analytical method for social structure

Blockmodeling is a set or a coherent framework, that is used for analyzing social structure and also for setting procedure(s) for partitioning (clustering) social network's units, based on specific patterns, which form a distinctive structure through interconnectivity. It is primarily used in statistics, machine learning and network science.

Aleš Žiberna is a Slovene statistician, whose specialty is network analysis. His specific research interests include blockmodeling, multivariate analysis and computer intensive methods.

In generalized blockmodeling, the blockmodeling is done by "the translation of an equivalence type into a set of permitted block types", which differs from the conventional blockmodeling, which is using the indirect approach. It's a special instance of the direct blockmodeling approach.

Patrick Doreian is an American mathematician and social scientist, whose specialty is network analysis. His specific research interests include blockmodeling, social structure and network processes.

Deterministic blockmodeling is an approach in blockmodeling that does not assume a probabilistic model, and instead relies on the exact or approximate algorithms, which are used to find blockmodel(s). This approach typically minimizes some inconsistency that can occur with the ideal block structure. Such analysis is focused on clustering (grouping) of the network that is obtained with minimizing an objective function, which measures discrepancy from the ideal block structure.

Generalized blockmodeling of valued networks is an approach of the generalized blockmodeling, dealing with valued networks.

In mathematics applied to analysis of social structures, homogeneity blockmodeling is an approach in blockmodeling, which is best suited for a preliminary or main approach to valued networks, when a prior knowledge about these networks is not available. This is due to the fact, that homogeneity blockmodeling emphasizes the similarity of link (tie) strengths within the blocks over the pattern of links. In this approach, tie (link) values are assumed to be equal (homogenous) within blocks.

Blockmodeling linked networks is an approach in blockmodeling in analysing the linked networks. Such approach is based on the generalized multilevel blockmodeling approach. The main objective of this approach is to achieve clustering of the nodes from all involved sets, while at the same time using all available information. At the same time, all one-mode and two-node networks, that are connected, are blockmodeled, which results in obtaining only one clustering, using nodes from each sets. Each cluster ideally contains only nodes from one set, which also allows the modeling of the links among clusters from different sets. This approach was introduced by Aleš Žiberna in 2014.

Exploratory blockmodeling is an (inductive) approach in blockmodeling regarding the specification of an ideal blockmodel. This approach, also known as hypotheses-generating, is the simplest approach, as it "merely involves the definition of the block types permitted as well as of the number of clusters." With this approach, researcher usually defines the best possible blockmodel, which then represent the base for the analysis of the whole network.

Implicit blockmodeling is an approach in blockmodeling, similar to a valued and homogeneity blockmodeling, where initially an additional normalization is used and then while specifying the parameter of the relevant link is replaced by the block maximum.

Generalized blockmodeling of binary networks is an approach of generalized blockmodeling, analysing the binary network(s).

References

  1. 1 2 Doreian, Patrick; Batagelj, Vladimir; Ferligoj, Anuška (2004). Generalized Blockmodeling (Structural Analysis in the Social Sciences). Cambridge University Press. ISBN   0-521-84085-6.
  2. Aleš Žiberna, Generalized blockmodeling of valued networks (pospološeno bločno modeliranje omrežij z vrednostmi na povezavah: doktorska disertacija. Ljubljana: Univerza v Ljubljani, Fakulteta za družbene vede, 2007. URL: http://www2.arnes.si/~aziber4/blockmodeling/Dissertation-final-corrected.pdf.

See also