Conformal welding

Last updated

In mathematics, conformal welding (sewing or gluing) is a process in geometric function theory for producing a Riemann surface by joining together two Riemann surfaces, each with a disk removed, along their boundary circles. This problem can be reduced to that of finding univalent holomorphic maps f, g of the unit disk and its complement into the extended complex plane, both admitting continuous extensions to the closure of their domains, such that the images are complementary Jordan domains and such that on the unit circle they differ by a given quasisymmetric homeomorphism. Several proofs are known using a variety of techniques, including the Beltrami equation, [1] the Hilbert transform on the circle [2] and elementary approximation techniques. [3] Sharon & Mumford (2006) describe the first two methods of conformal welding as well as providing numerical computations and applications to the analysis of shapes in the plane.

Contents

Welding using the Beltrami equation

This method was first proposed by Pfluger (1960).

If f is a diffeomorphism of the circle, the Alexander extension gives a way of extending f to a diffeomorphism of the unit disk D:

where ψ is a smooth function with values in [0,1], equal to 0 near 0 and 1 near 1, and

with g(θ + 2π) = g(θ) + 2π.

The extension F can be continued to any larger disk |z| < R with R > 1. Accordingly in the unit disc

Now extend μ to a Beltrami coefficient on the whole of C by setting it equal to 0 for |z| ≥ 1. Let G be the corresponding solution of the Beltrami equation:

Let F1(z) = GF−1(z) for |z| ≤ 1 and F2(z) = G (z) for |z| ≥ 1. Thus F1 and F2 are univalent holomorphic maps of |z| < 1 and |z| > 1 onto the inside and outside of a Jordan curve. They extend continuously to homeomorphisms fi of the unit circle onto the Jordan curve on the boundary. By construction they satisfy the conformal welding condition:

Welding using the Hilbert transform on the circle

The use of the Hilbert transform to establish conformal welding was first suggested by the Georgian mathematicians D.G. Mandzhavidze and B.V. Khvedelidze in 1958. A detailed account was given at the same time by F.D. Gakhov and presented in his classic monograph (Gakhov (1990)).

Let en(θ) = einθ be the standard orthonormal basis of L2(T). Let H2(T) be Hardy space, the closed subspace spanned by the en with n ≥ 0. Let P be the orthogonal projection onto Hardy space and set T = 2P - I. The operator H = iT is the Hilbert transform on the circle and can be written as a singular integral operator.

Given a diffeomorphism f of the unit circle, the task is to determine two univalent holomorphic functions

defined in |z| < 1 and |z| > 1 and both extending smoothly to the unit circle, mapping onto a Jordan domain and its complement, such that

Let F be the restriction of f+ to the unit circle. Then

and

Hence

If V(f) denotes the bounded invertible operator on L2 induced by the diffeomorphism f, then the operator

is compact, indeed it is given by an operator with smooth kernel because P and T are given by singular integral operators. The equation above then reduces to

The operator IKf is a Fredholm operator of index zero. It has zero kernel and is therefore invertible. In fact an element in the kernel would consist of a pair of holomorphic functions on D and Dc which have smooth boundary values on the circle related by f. Since the holomorphic function on Dc vanishes at ∞, the positive powers of this pair also provide solutions, which are linearly independent, contradicting the fact that IKf is a Fredholm operator. The above equation therefore has a unique solution F which is smooth and from which f± can be reconstructed by reversing the steps above. Indeed, by looking at the equation satisfied by the logarithm of the derivative of F, it follows that F has nowhere vanishing derivative on the unit circle. Moreover F is one-to-one on the circle since if it assumes the value a at different points z1 and z2 then the logarithm of R(z) = (F(z) − a)/(z - z1)(zz2) would satisfy an integral equation known to have no non-zero solutions. Given these properties on the unit circle, the required properties of f± then follow from the argument principle. [4]

Notes

Related Research Articles

Riemann mapping theorem

In complex analysis, the Riemann mapping theorem states that if U is a non-empty simply connected open subset of the complex number plane C which is not all of C, then there exists a biholomorphic mapping f from U onto the open unit disk

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , , or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf(p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f(p).

In mathematics, the Schwarzian derivative, named after the German mathematician Hermann Schwarz, is a certain operator that is invariant under all Möbius transformations. Thus, it occurs in the theory of the complex projective line, and in particular, in the theory of modular forms and hypergeometric functions. It plays an important role in the theory of univalent functions, conformal mapping and Teichmüller spaces.

In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson.

In mathematics, Carathéodory's theorem is a theorem in complex analysis, named after Constantin Carathéodory, which extends the Riemann mapping theorem. The theorem, first proved in 1913, states that the conformal mapping sending the unit disk to the region in the complex plane bounded by a Jordan curve extends continuously to a homeomorphism from the unit circle onto the Jordan curve. The result is one of Carathéodory's results on prime ends and the boundary behaviour of univalent holomorphic functions.

In mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory.

In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermal coordinates, the Riemannian metric locally has the form

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematics, the Butcher group, named after the New Zealand mathematician John C. Butcher by Hairer & Wanner (1974), is an infinite-dimensional Lie group first introduced in numerical analysis to study solutions of non-linear ordinary differential equations by the Runge–Kutta method. It arose from an algebraic formalism involving rooted trees that provides formal power series solutions of the differential equation modeling the flow of a vector field. It was Cayley (1857), prompted by the work of Sylvester on change of variables in differential calculus, who first noted that the derivatives of a composition of functions can be conveniently expressed in terms of rooted trees and their combinatorics.

In mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation

In mathematics, the Koenigs function is a function arising in complex analysis and dynamical systems. Introduced in 1884 by the French mathematician Gabriel Koenigs, it gives a canonical representation as dilations of a univalent holomorphic mapping, or a semigroup of mappings, of the unit disk in the complex numbers into itself.

In mathematics, Nevanlinna's criterion in complex analysis, proved in 1920 by the Finnish mathematician Rolf Nevanlinna, characterizes holomorphic univalent functions on the unit disk which are starlike. Nevanlinna used this criterion to prove the Bieberbach conjecture for starlike univalent functions

In mathematics, the Littlewood subordination theorem, proved by J. E. Littlewood in 1925, is a theorem in operator theory and complex analysis. It states that any holomorphic univalent self-mapping of the unit disk in the complex numbers that fixes 0 induces a contractive composition operator on various function spaces of holomorphic functions on the disk. These spaces include the Hardy spaces, the Bergman spaces and Dirichlet space.

In mathematics, the Loewner differential equation, or Loewner equation, is an ordinary differential equation discovered by Charles Loewner in 1923 in complex analysis and geometric function theory. Originally introduced for studying slit mappings, Loewner's method was later developed in 1943 by the Russian mathematician Pavel Parfenevich Kufarev (1909–1968). Any family of domains in the complex plane that expands continuously in the sense of Carathéodory to the whole plane leads to a one parameter family of conformal mappings, called a Loewner chain, as well as a two parameter family of holomorphic univalent self-mappings of the unit disk, called a Loewner semigroup. This semigroup corresponds to a time dependent holomorphic vector field on the disk given by a one parameter family of holomorphic functions on the disk with positive real part. The Loewner semigroup generalizes the notion of a univalent semigroup.

In mathematics, a quasicircle is a Jordan curve in the complex plane that is the image of a circle under a quasiconformal mapping of the plane onto itself. Originally introduced independently by Pfluger (1961) and Tienari (1962), in the older literature they were referred to as quasiconformal curves, a terminology which also applied to arcs. In complex analysis and geometric function theory, quasicircles play a fundamental role in the description of the universal Teichmüller space, through quasisymmetric homeomorphisms of the circle. Quasicircles also play an important role in complex dynamical systems.

In mathematics, a positive harmonic function on the unit disc in the complex numbers is characterized as the Poisson integral of a finite positive measure on the circle. This result, the Herglotz-Riesz representation theorem, was proved independently by Gustav Herglotz and Frigyes Riesz in 1911. It can be used to give a related formula and characterization for any holomorphic function on the unit disc with positive real part. Such functions had already been characterized in 1907 by Constantin Carathéodory in terms of the positive definiteness of their Taylor coefficients.

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

In mathematics, the Douady–Earle extension, named after Adrien Douady and Clifford Earle, is a way of extending homeomorphisms of the unit circle in the complex plane to homeomorphisms of the closed unit disk, such that the extension is a diffeomorphism of the open disk. The extension is analytic on the open disk. The extension has an important equivariance property: if the homeomorphism is composed on either side with a Möbius transformation preserving the unit circle the extension is also obtained by composition with the same Möbius transformation. If the homeomorphism is quasisymmetric, the diffeomorphism is quasiconformal. An extension for quasisymmetric homeomorphisms had previously been given by Lars Ahlfors and Arne Beurling; a different equivariant construction had been given in 1985 by Pekka Tukia. Equivariant extensions have important applications in Teichmüller theory; for example, they lead to a quick proof of the contractibility of the Teichmüller space of a Fuchsian group.

In mathematics, the Radó–Kneser–Choquet theorem, named after Tibor Radó, Hellmuth Kneser and Gustave Choquet, states that the Poisson integral of a homeomorphism of the unit circle is a harmonic diffeomorphism of the open unit disk. The result was stated as a problem by Radó and solved shortly afterwards by Kneser in 1926. Choquet, unaware of the work of Radó and Kneser, rediscovered the result with a different proof in 1945. Choquet also generalized the result to the Poisson integral of a homeomorphism from the unit circle to a simple Jordan curve bounding a convex region.

In mathematics, singular integral operators on closed curves arise in problems in analysis, in particular complex analysis and harmonic analysis. The two main singular integral operators, the Hilbert transform and the Cauchy transform, can be defined for any smooth Jordan curve in the complex plane and are related by a simple algebraic formula. In the special case of Fourier series for the unit circle, the operators become the classical Cauchy transform, the orthogonal projection onto Hardy space, and the Hilbert transform a real orthogonal linear complex structure. In general the Cauchy transform is a non-self-adjoint idempotent and the Hilbert transform a non-orthogonal complex structure. The range of the Cauchy transform is the Hardy space of the bounded region enclosed by the Jordan curve. The theory for the original curve can be deduced from that of the unit circle, where, because of rotational symmetry, both operators are classical singular integral operators of convolution type. The Hilbert transform satisfies the jump relations of Plemelj and Sokhotski, which express the original function as the difference between the boundary values of holomorphic functions on the region and its complement. Singular integral operators have been studied on various classes of functions, including Hőlder spaces, Lp spaces and Sobolev spaces. In the case of L2 spaces—the case treated in detail below—other operators associated with the closed curve, such as the Szegő projection onto Hardy space and the Neumann–Poincaré operator, can be expressed in terms of the Cauchy transform and its adjoint.

References