Consistency (database systems)

Last updated

In database systems, consistency (or correctness) refers to the requirement that any given database transaction must change affected data only in allowed ways. Any data written to the database must be valid according to all defined rules, including constraints, cascades, triggers, and any combination thereof. This does not guarantee correctness of the transaction in all ways the application programmer might have wanted (that is the responsibility of application-level code) but merely that any programming errors cannot result in the violation of any defined database constraints. [1]

Contents

In a distributed system, referencing CAP theorem, consistency can also be understood as after a successful write, update or delete of a Record, any read request immediately receives the latest value of the Record.

As an ACID guarantee

Consistency is one of the four guarantees that define ACID transactions; however, significant ambiguity exists about the nature of this guarantee. It is defined variously as:

As these various definitions are not mutually exclusive, it is possible to design a system that guarantees "consistency" in every sense of the word, as most relational database management systems in common use today arguably do.

As a CAP trade-off

The CAP theorem is based on three trade-offs, one of which is "atomic consistency" (shortened to "consistency" for the acronym), about which the authors note, "Discussing atomic consistency is somewhat different than talking about an ACID database, as database consistency refers to transactions, while atomic consistency refers only to a property of a single request/response operation sequence. And it has a different meaning than the Atomic in ACID, as it subsumes the database notions of both Atomic and Consistent." [7] In the CAP theorem, you can only have two of the following three properties: consistency, availability, or partition tolerance. Therefore, consistency may have to be traded off in some database systems.

See also

Related Research Articles

<span class="mw-page-title-main">Database</span> Organized collection of data in computing

In computing, a database is an organized collection of data or a type of data store based on the use of a database management system (DBMS), the software that interacts with end users, applications, and the database itself to capture and analyze the data. The DBMS additionally encompasses the core facilities provided to administer the database. The sum total of the database, the DBMS and the associated applications can be referred to as a database system. Often the term "database" is also used loosely to refer to any of the DBMS, the database system or an application associated with the database.

The relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.

In computer science, ACID is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequence of database operations that satisfies the ACID properties is called a transaction. For example, a transfer of funds from one bank account to another, even involving multiple changes such as debiting one account and crediting another, is a single transaction.

First normal form (1NF) is a property of a relation in a relational database. A relation is in first normal form if and only if no attribute domain has relations as elements. Or more informally, that no table column can have tables as values. Database normalization is the process of representing a database in terms of relations in standard normal forms, where first normal is a minimal requirement. SQL-92 does not support creating or using table-valued columns, which means that using only the "traditional relational database features" most relational databases will be in first normal form by necessity. Database systems which do not require first normal form are often called NoSQL systems. Newer SQL standards like SQL:1999 have started to allow so called non-atomic types, which include composite types. Even newer versions like SQL:2016 allow JSON.

In information technology and computer science, especially in the fields of computer programming, operating systems, multiprocessors, and databases, concurrency control ensures that correct results for concurrent operations are generated, while getting those results as quickly as possible.

A database transaction symbolizes a unit of work, performed within a database management system against a database, that is treated in a coherent and reliable way independent of other transactions. A transaction generally represents any change in a database. Transactions in a database environment have two main purposes:

  1. To provide reliable units of work that allow correct recovery from failures and keep a database consistent even in cases of system failure. For example: when execution prematurely and unexpectedly stops in which case many operations upon a database remain uncompleted, with unclear status.
  2. To provide isolation between programs accessing a database concurrently. If this isolation is not provided, the programs' outcomes are possibly erroneous.

In database systems, durability is the ACID property that guarantees that the effects of transactions that have been committed will survive permanently, even in case of failures, including incidents and catastrophic events. For example, if a flight booking reports that a seat has successfully been booked, then the seat will remain booked even if the system crashes.

In database systems, isolation is one of the ACID transaction properties. It determines how transaction integrity is visible to other users and systems. A lower isolation level increases the ability of many users to access the same data at the same time, but also increases the number of concurrency effects users might encounter. Conversely, a higher isolation level reduces the types of concurrency effects that users may encounter, but requires more system resources and increases the chances that one transaction will block another.

In database systems, atomicity is one of the ACID transaction properties. An atomic transaction is an indivisible and irreducible series of database operations such that either all occur, or none occur. A guarantee of atomicity prevents partial database updates from occurring, because they can cause greater problems than rejecting the whole series outright. As a consequence, the transaction cannot be observed to be in progress by another database client. At one moment in time, it has not yet happened, and at the next it has already occurred in whole.

In computer science and data management, a commit is the making of a set of tentative changes permanent, marking the end of a transaction and providing Durability to ACID transactions. A commit is an act of committing. The record of commits is called the commit log.

Object–relational impedance mismatch is a set of difficulties going between data in relational data stores and data in domain-driven object models. Relational Database Management Systems (RDBMS) is the standard method for storing data in a dedicated database, while object-oriented (OO) programming is the default method for business-centric design in programming languages. The problem lies in neither relational databases nor OO programming, but in the conceptual difficulty mapping between the two logic models. Both logical models are differently implementable using database servers, programming languages, design patterns, or other technologies. Issues range from application to enterprise scale, whenever stored relational data is used in domain-driven object models, and vice versa. Object-oriented data stores can trade this problem for other implementation difficulties.

Replication in computing involves sharing information so as to ensure consistency between redundant resources, such as software or hardware components, to improve reliability, fault-tolerance, or accessibility.

NoSQL is an approach to database design that focuses on providing a mechanism for storage and retrieval of data that is modeled in means other than the tabular relations used in relational databases. Instead of the typical tabular structure of a relational database, NoSQL databases house data within one data structure. Since this non-relational database design does not require a schema, it offers rapid scalability to manage large and typically unstructured data sets. NoSQL systems are also sometimes called "Not only SQL" to emphasize that they may support SQL-like query languages or sit alongside SQL databases in polyglot-persistent architectures.

<span class="mw-page-title-main">CAP theorem</span> Need to sacrifice consistency or availability in the presence of network partitions

In database theory, the CAP theorem, also named Brewer's theorem after computer scientist Eric Brewer, states that any distributed data store can provide only two of the following three guarantees:

The following is provided as an overview of and topical guide to databases:

<span class="mw-page-title-main">Oracle NoSQL Database</span> Distributed database

Oracle NoSQL Database is a NoSQL-type distributed key-value database from Oracle Corporation. It provides transactional semantics for data manipulation, horizontal scalability, and simple administration and monitoring.

NewSQL is a class of relational database management systems that seek to provide the scalability of NoSQL systems for online transaction processing (OLTP) workloads while maintaining the ACID guarantees of a traditional database system.

<span class="mw-page-title-main">PACELC theorem</span> Theorem in theoretical computer science

In database theory, the PACELC theorem is an extension to the CAP theorem. It states that in case of network partitioning (P) in a distributed computer system, one has to choose between availability (A) and consistency (C), but else (E), even when the system is running normally in the absence of partitions, one has to choose between latency (L) and loss of consistency (C).

Database scalability is the ability of a database to handle changing demands by adding/removing resources. Databases use a host of techniques to cope. According to Marc Brooker: "a system is scalable in the range where marginal cost of additional workload is nearly constant." Serverless technologies fit this definition but you need to consider total cost of ownership not just the infra cost.

A distributed SQL database is a single relational database which replicates data across multiple servers. Distributed SQL databases are strongly consistent and most support consistency across racks, data centers, and wide area networks including cloud availability zones and cloud geographic zones. Distributed SQL databases typically use the Paxos or Raft algorithms to achieve consensus across multiple nodes.

References

  1. C. J. Date, "SQL and Relational Theory: How to Write Accurate SQL Code 2nd edition", O'reilly Media, Inc., 2012, pg. 180.
  2. Haerder, T; Reuter, A. (December 1983). "Principles of Transaction-Oriented Database Recovery" (PDF). Computing Surveys. 15 (4): 287–317. doi:10.1145/289.291. S2CID   207235758. Archived from the original (PDF) on 2017-09-07.
  3. Mike Chapple. "The ACID Model". About. Archived from the original on 2016-12-29. Retrieved 2014-07-23.
  4. "ACID properties".
  5. Cory Janssen. "What is ACID in Databases? - Definition from Techopedia". Techopedia.com.
  6. "ISO/IEC 10026-1:1998 - Information technology -- Open Systems Interconnection -- Distributed Transaction Processing -- Part 1: OSI TP Model".
  7. 1 2 "Brewer's Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services" (PDF). Archived from the original (PDF) on 2019-06-29.
  8. Ports, D.R.K.; Clements, A.T.; Zhang, I.; Madden, S.; Liskov, B. "Transactional Consistency and Automatic Management in an Application Data Cache" (PDF). Mit Csail.