Constant strain triangle element

Last updated

In numerical mathematics, the constant strain triangle element, also known as the CST element or T3 element, is a type of element used in finite element analysis which is used to provide an approximate solution in a 2D domain to the exact solution of a given differential equation.

The name of this element reflects how the partial derivatives of this element's shape function are linear functions. When applied to plane stress and plane strain problems, this means that the approximate solution obtained for the stress and strain fields are constant throughout the element's domain.

The element provides an approximation for the exact solution of a partial differential equation which is parametrized barycentric coordinate system (mathematics)


Related Research Articles

In mathematics, an equation is a statement that asserts the equality of two expressions, which are connected by the equals sign "=". The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any equality is an equation.

Numerical analysis Field of mathematics

Numerical analysis is the study of algorithms that use numerical approximation for the problems of mathematical analysis. Numerical analysis naturally finds application in all fields of engineering and the physical sciences, but in the 21st century also the life sciences, social sciences, medicine, business and even the arts have adopted elements of scientific computations. The growth in computing power has revolutionized the use of realistic mathematical models in science and engineering, and subtle numerical analysis is required to implement these detailed models of the world. For example, ordinary differential equations appear in celestial mechanics ; numerical linear algebra is important for data analysis; stochastic differential equations and Markov chains are essential in simulating living cells for medicine and biology.

Partial differential equation Type of Multivariable Function

In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow, at every point, are linearly correlated to the local strain rate—the rate of change of its deformation over time. That is equivalent to saying those forces are proportional to the rates of change of the fluid's velocity vector as one moves away from the point in question in various directions.

Boundary value problem Constrained Differential Equation

In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions.

Stress–strain analysis is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material.

Helmholtz equation

In mathematics, the eigenvalue problem for the Laplace operator is known as the Helmholtz equation. It corresponds to the linear partial differential equation:

Differential equation Mathematical equation involving derivatives of an unknown function

In mathematics, a differential equation is an equation that relates one or more functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs).

Exact solutions in general relativity

In general relativity, an exact solution is solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field.

Euler–Bernoulli beam theory

Euler–Bernoulli beam theory is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case for small deflections of a beam that are subjected to lateral loads only. It is thus a special case of Timoshenko beam theory. It was first enunciated circa 1750, but was not applied on a large scale until the development of the Eiffel Tower and the Ferris wheel in the late 19th century. Following these successful demonstrations, it quickly became a cornerstone of engineering and an enabler of the Second Industrial Revolution.

The patch test in the finite element method is a simple indicator of the quality of a finite element, developed by Bruce Irons. The patch test uses a partial differential equation on a domain consisting from several elements set up so that the exact solution is known and can be reproduced, in principle, with zero error. Typically, in mechanics, the prescribed exact solution consists of displacements that vary as piecewise linear functions in space. The elements pass the patch test if the finite element solution is the same as the exact solution.

A complex differential equation is a differential equation whose solutions are functions of a complex variable.

Finite element method Numerical method for solving physical or engineering problems

The finite element method (FEM) is a widely used method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

In mathematics, and specifically the field of partial differential equations (PDEs), a parametrix is an approximation to a fundamental solution of a PDE, and is essentially an approximate inverse to a differential operator.

hp-FEM is a general version of the finite element method (FEM), a numerical method for solving partial differential equations based on piecewise-polynomial approximations that employs elements of variable size (h) and polynomial degree (p). The origins of hp-FEM date back to the pioneering work of Barna A. Szabó and Ivo Babuška who discovered that the finite element method converges exponentially fast when the mesh is refined using a suitable combination of h-refinements (dividing elements into smaller ones) and p-refinements. The exponential convergence makes the method a very attractive choice compared to most other finite element methods which only converge with an algebraic rate. The exponential convergence of the hp-FEM was not only predicted theoretically but also observed by numerous independent researchers.

Ordinary differential equation Differential equation containing derivatives with respect to only one variable

In mathematics, an ordinary differential equation (ODE) is a differential equation containing one or more functions of one independent variable and the derivatives of those functions. The term ordinary is used in contrast with the term partial differential equation which may be with respect to more than one independent variable.

The Kansa method is a computer method used to solve partial differential equations. Partial differential equations are mathematical models of things like stresses in a car's body, air flow around a wing, the shock wave in front of a supersonic airplane, quantum mechanical model of an atom, ocean waves, socio-economic models, digital image processing etc. The computer takes the known quantities such as pressure, temperature, air velocity, stress, and then uses the laws of physics to figure out what the rest of the quantities should be like a puzzle being fit together. Then, for example, the stresses in various parts of a car can be determined when that car hits a bump at 70 miles per hour.

The quadratic quadrilateral element, also known as the Q8 element is a type of element used in finite element analysis which is used to approximate in a 2D domain the exact solution to a given differential equation. It is a two-dimensional finite element with both local and global coordinates. This element can be used for plane stress or plane strain problems in elasticity. The quadratic quadrilateral element has modulus of elasticity E, Poisson’s ratio v, and thickness t.