Constraint (classical mechanics)

Last updated
In this system the box slides down a slope, the constraint is that the box must remain on the slope (it cannot go through it or start flying). Friction angle.png
In this system the box slides down a slope, the constraint is that the box must remain on the slope (it cannot go through it or start flying).

In classical mechanics, a constraint on a system is a parameter that the system must obey. For example, a box sliding down a slope must remain on the slope. There are two different types of constraints: holonomic and non-holonomic. [1]

Types of constraint

Related Research Articles

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form

In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state. The generalized velocities are the time derivatives of the generalized coordinates of the system. The adjective "generalized" distinguishes these parameters from the traditional use of the term "coordinate" to refer to Cartesian coordinates.

<span class="mw-page-title-main">D'Alembert's principle</span> Statement in classical mechanics

D'Alembert's principle, also known as the Lagrange–d'Alembert principle, is a statement of the fundamental classical laws of motion. It is named after its discoverer, the French physicist and mathematician Jean le Rond d'Alembert. D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium.

A nonholonomic system in physics and mathematics is a physical system whose state depends on the path taken in order to achieve it. Such a system is described by a set of parameters subject to differential constraints and non-linear constraints, such that when the system evolves along a path in its parameter space but finally returns to the original set of parameter values at the start of the path, the system itself may not have returned to its original state. Nonholonomic mechanics is autonomous division of Newtonian mechanics.

Holonomic may refer to:

In physics, the degrees of freedom (DOF) of a mechanical system is the number of independent parameters that define its configuration or state. It is important in the analysis of systems of bodies in mechanical engineering, structural engineering, aerospace engineering, robotics, and other fields.

<span class="mw-page-title-main">Optimal foraging theory</span> Behavioral ecology model

Optimal foraging theory (OFT) is a behavioral ecology model that helps predict how an animal behaves when searching for food. Although obtaining food provides the animal with energy, searching for and capturing the food require both energy and time. To maximize fitness, an animal adopts a foraging strategy that provides the most benefit (energy) for the lowest cost, maximizing the net energy gained. OFT helps predict the best strategy that an animal can use to achieve this goal.

<span class="mw-page-title-main">Process function</span>

In thermodynamics, a quantity that is well defined so as to describe the path of a process through the equilibrium state space of a thermodynamic system is termed a process function, or, alternatively, a process quantity, or a path function. As an example, mechanical work and heat are process functions because they describe quantitatively the transition between equilibrium states of a thermodynamic system.

A mechanical system is scleronomous if the equations of constraints do not contain the time as an explicit variable and the equation of constraints can be described by generalized coordinates. Such constraints are called scleronomic constraints. The opposite of scleronomous is rheonomous.

A mechanical system is rheonomous if its equations of constraints contain the time as an explicit variable. Such constraints are called rheonomic constraints. The opposite of rheonomous is scleronomous.

Multibody system is the study of the dynamic behavior of interconnected rigid or flexible bodies, each of which may undergo large translational and rotational displacements.

<span class="mw-page-title-main">Kinematic chain</span> Mathematical model for a mechanical system

In mechanical engineering, a kinematic chain is an assembly of rigid bodies connected by joints to provide constrained motion that is the mathematical model for a mechanical system. As the word chain suggests, the rigid bodies, or links, are constrained by their connections to other links. An example is the simple open chain formed by links connected in series, like the usual chain, which is the kinematic model for a typical robot manipulator.

In classical mechanics, holonomic constraints are relations between the position variables that can be expressed in the following form:

The Dirac bracket is a generalization of the Poisson bracket developed by Paul Dirac to treat classical systems with second class constraints in Hamiltonian mechanics, and to thus allow them to undergo canonical quantization. It is an important part of Dirac's development of Hamiltonian mechanics to elegantly handle more general Lagrangians; specifically, when constraints are at hand, so that the number of apparent variables exceeds that of dynamical ones. More abstractly, the two-form implied from the Dirac bracket is the restriction of the symplectic form to the constraint surface in phase space.

In classical mechanics, a physical system is termed a monogenic system if the force acting on the system can be modelled in a particular, especially convenient mathematical form. The systems that are typically studied in physics are monogenic. The term was introduced by Cornelius Lanczos in his book The Variational Principles of Mechanics (1970).

In dynamics, a Pfaffian constraint is a way to describe a dynamical system in the form:

In classical mechanics, the Udwadia–Kalaba formulation is a method for deriving the equations of motion of a constrained mechanical system. The method was first described by Vereshchagin for the particular case of robotic arms, and later generalized to all mechanical systems by Firdaus E. Udwadia and Robert E. Kalaba in 1992. The approach is based on Gauss's principle of least constraint. The Udwadia–Kalaba method applies to both holonomic constraints and nonholonomic constraints, as long as they are linear with respect to the accelerations. The method generalizes to constraint forces that do not obey D'Alembert's principle.

<span class="mw-page-title-main">Lagrangian mechanics</span> Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, Mécanique analytique.

<span class="mw-page-title-main">Hazmat diving</span> Underwater diving in a known hazardous materials environment

Hazmat diving is underwater diving in a known hazardous materials environment. The environment may be contaminated by hazardous materials, the diving medium may be inherently a hazardous material, or the environment in which the diving medium is situated may include hazardous materials with a significant risk of exposure to these materials to members of the diving team. Special precautions, equipment and procedures are associated with hazmat diving so that the risk can be reduced to an acceptable level.

Nikolay Gur'yevich Chetaev was a Russian Soviet mechanician and mathematician. He was born in Karaduli, Laishevskiy uyezd, Kazan province, Russian Empire and died in Moscow, USSR. He belongs to the Kazan school of mathematics.

References

  1. Leach, Dr Andrew (2001-01-30). Molecular Modelling: Principles and Applications (2nd ed.). Harlow: Prentice Hall. pp. 369–370. ISBN   9780582382107.