Nonholonomic system

Last updated

A nonholonomic system in physics and mathematics is a physical system whose state depends on the path taken in order to achieve it. Such a system is described by a set of parameters subject to differential constraints and non-linear constraints, such that when the system evolves along a path in its parameter space (the parameters varying continuously in values) but finally returns to the original set of parameter values at the start of the path, the system itself may not have returned to its original state. Nonholonomic mechanics is autonomous division of Newtonian mechanics. [1]

Contents

Details

More precisely, a nonholonomic system, also called an anholonomic system, is one in which there is a continuous closed circuit of the governing parameters, by which the system may be transformed from any given state to any other state. [2] Because the final state of the system depends on the intermediate values of its trajectory through parameter space, the system cannot be represented by a conservative potential function as can, for example, the inverse square law of the gravitational force. This latter is an example of a holonomic system: path integrals in the system depend only upon the initial and final states of the system (positions in the potential), completely independent of the trajectory of transition between those states. The system is therefore said to be integrable, while the nonholonomic system is said to be nonintegrable. When a path integral is computed in a nonholonomic system, the value represents a deviation within some range of admissible values and this deviation is said to be an anholonomy produced by the specific path under consideration. This term was introduced by Heinrich Hertz in 1894. [3]

The general character of anholonomic systems is that of implicitly dependent parameters. If the implicit dependency can be removed, for example by raising the dimension of the space, thereby adding at least one additional parameter, the system is not truly nonholonomic, but is simply incompletely modeled by the lower-dimensional space. In contrast, if the system intrinsically cannot be represented by independent coordinates (parameters), then it is truly an anholonomic system. Some authors[ citation needed ] make much of this by creating a distinction between so-called internal and external states of the system, but in truth, all parameters are necessary to characterize the system, be they representative of "internal" or "external" processes, so the distinction is in fact artificial. However, there is a very real and irreconcilable difference between physical systems that obey conservation principles and those that do not. In the case of parallel transport on a sphere, the distinction is clear: a Riemannian manifold has a metric fundamentally distinct from that of a Euclidean space. For parallel transport on a sphere, the implicit dependence is intrinsic to the non-euclidean metric. The surface of a sphere is a two-dimensional space. By raising the dimension, we can more clearly see[ clarification needed ] the nature of the metric, but it is still fundamentally a two-dimensional space with parameters irretrievably entwined in dependency by the Riemannian metric.

By contrast, one can consider an X-Y plotter as an example of a holonomic system where the state of the system's mechanical components will have a single fixed configuration for any given position of the plotter pen. If the pen relocates between positions 0,0 and 3,3, the mechanism's gears will have the same final positions regardless of whether the relocation happens by the mechanism first incrementing 3 units on the x-axis and then 3 units on the y-axis, incrementing the Y-axis position first, or operating any other sequence of position-changes that result in a final position of 3,3. Since the final state of the machine is the same regardless of the path taken by the plotter-pen to get to its new position, the end result can be said not to be path-dependent. If we substitute a turtle plotter, the process of moving the pen from 0,0 to 3,3 can result in the gears of the robot's mechanism finishing in different positions depending on the path taken to move between the two positions. See this very similar gantry crane example for a mathematical explanation of why such a system is holonomic.

History

N. M. Ferrers first suggested to extend the equations of motion with nonholonomic constraints in 1871. [4] He introduced the expressions for Cartesian velocities in terms of generalized velocities. In 1877, E. Routh wrote the equations with the Lagrange multipliers. In the third edition of his book [5] for linear non-holonomic constraints of rigid bodies, he introduced the form with multipliers, which is now called the Lagrange equations of the second kind with multipliers. The terms the holonomic and nonholonomic systems were introduced by Heinrich Hertz in 1894. [6] In 1897, S. A. Chaplygin first suggested to form the equations of motion without Lagrange multipliers. [7] Under certain linear constraints, he introduced on the left-hand side of the equations of motion a group of extra terms of the Lagrange-operator type. The remaining extra terms characterise the nonholonomicity of system and they become zero when the given constrains are integrable. In 1901 P. V.Voronets generalised Chaplygin's work to the cases of noncyclic holonomic coordinates and of nonstationary constraints. [8]

Constraints

Consider a system of particles with positions for with respect to a given reference frame. In classical mechanics, any constraint that is not expressible as

is a non-holonomic constraint. In other words, a nonholonomic constraint is nonintegrable [9] :261 and in Pfaffian form:

In order for the above form to be nonholonomic, it is also required that the left hand side neither be a total differential nor be able to be converted into one, perhaps via an integrating factor. [10] :2–3

For virtual displacements only, the differential form of the constraint is [9] :282

It is not necessary for all non-holonomic constraints to take this form, in fact it may involve higher derivatives or inequalities. [11] A classical example of an inequality constraint is that of a particle placed on the surface of a sphere, yet is allowed to fall off it:

Examples

Rolling wheel

A wheel (sometimes visualized as a unicycle or a rolling coin) is a nonholonomic system.

Layperson's explanation

Consider the wheel of a bicycle that is parked in a certain place (on the ground). Initially the inflation valve is at a certain position on the wheel. If the bicycle is ridden around, and then parked in exactly the same place, the valve will almost certainly not be in the same position as before. Its new position depends on the path taken. If the wheel were holonomic, then the valve stem would always end up in the same position as long as the wheel were always rolled back to the same location on the Earth. Clearly, however, this is not the case, so the system is nonholonomic.

Mathematical explanation

An individual riding a motorized unicycle. The configuration space of the unicycle, and the radius
r
{\displaystyle r}
of the wheel, are marked. The red and blue lines lay on the ground. Unicycle drawing updat.png
An individual riding a motorized unicycle. The configuration space of the unicycle, and the radius of the wheel, are marked. The red and blue lines lay on the ground.

It is possible to model the wheel mathematically with a system of constraint equations, and then prove that that system is nonholonomic.

First, we define the configuration space. The wheel can change its state in three ways: having a different rotation about its axle, having a different steering angle, and being at a different location. We may say that is the rotation about the axle, is the steering angle relative to the -axis, and and define the spatial position. Thus, the configuration space is:

We must now relate these variables to each other. We notice that as the wheel changes its rotation, it changes its position. The change in rotation and position implying velocities must be present, we attempt to relate angular velocity and steering angle to linear velocities by taking simple time-derivatives of the appropriate terms: The velocity in the direction is equal to the angular velocity times the radius times the cosine of the steering angle, and the velocity is similar. Now we do some algebraic manipulation to transform the equation to Pfaffian form so it is possible to test whether it is holonomic, starting with:

Then, let's separate the variables from their coefficients (left side of equation, derived from above). We also realize that we can multiply all terms by so we end up with only the differentials (right side of equation): The right side of the equation is now in Pfaffian form:

We now use the universal test for holonomic constraints. If this system were holonomic, we might have to do up to eight tests. However, we can use mathematical intuition to try our best to prove that the system is nonholonomic on the first test. Considering the test equation is:

we can see that if any of the terms , , or were zero, then that part of the test equation would be trivial to solve and would be equal to zero. Therefore, it is often best practice to have the first test equation have as many non-zero terms as possible to maximize the chance of the sum of them not equaling zero. Therefore, we choose:

We substitute into our test equation:

and simplify:

We can easily see that this system, as described, is nonholonomic, because is not always equal to zero.

Additional conclusions

We have completed our proof that the system is nonholonomic, but our test equation gave us some insights about whether the system, if further constrained, could be holonomic. Many times test equations will return a result like implying the system could never be constrained to be holonomic without radically altering the system, but in our result we can see that can be equal to zero, in two different ways:

  • , the radius of the wheel, can be zero. This is not helpful as the system in practice would lose all of its degrees of freedom.
  • can be zero by setting equal to zero. This implies that if the wheel were not allowed to turn and had to move only in a straight line at all times, it would be a holonomic system.

There is one thing that we have not yet considered however, that to find all such modifications for a system, one must perform all eight test equations (four from each constraint equation) and collect all the failures to gather all requirements to make the system holonomic, if possible. In this system, out of the seven additional test equations, an additional case presents itself: This does not pose much difficulty, however, as adding the equations and dividing by results in: which with some simple algebraic manipulation becomes:

which has the solution (from ).

Refer back to the layman's explanation above where it is said, "[The valve stem's] new position depends on the path taken. If the wheel were holonomic, then the valve stem would always end up in the same position as long as the wheel were always rolled back to the same location on the Earth. Clearly, however, this is not the case, so the system is nonholonomic." However it is easy to visualize that if the wheel were only allowed to roll in a perfectly straight line and back, the valve stem would end up in the same position! In fact, moving parallel to the given angle of is not actually necessary in the real world as the orientation of the coordinate system itself is arbitrary. The system can become holonomic if the wheel moves only in a straight line at any fixed angle relative to a given reference. Thus, we have not only proved that the original system is nonholonomic, but we also were able to find a restriction that can be added to the system to make it holonomic.

However, there is something mathematically special about the restriction of for the system to make it holonomic, as in a Cartesian grid. Combining the two equations and eliminating , we indeed see that and therefore one of those two coordinates is completely redundant. We already know that the steering angle is a constant, so that means the holonomic system here needs to only have a configuration space of . As discussed here, a system that is modellable by a Pfaffian constraint must be holonomic if the configuration space consists of two or fewer variables. By modifying our original system to restrict it to have only two degrees of freedom and thus requiring only two variables to be described, and assuming it can be described in Pfaffian form (which in this example we already know is true), we are assured that it is holonomic.

Rolling sphere

This example is an extension of the 'rolling wheel' problem considered above.

Consider a three-dimensional orthogonal Cartesian coordinate frame, for example, a level table top with a point marked on it for the origin, and the x and y axes laid out with pencil lines. Take a sphere of unit radius, for example, a ping-pong ball, and mark one point B in blue. Corresponding to this point is a diameter of the sphere, and the plane orthogonal to this diameter positioned at the center C of the sphere defines a great circle called the equator associated with point B. On this equator, select another point R and mark it in red. Position the sphere on the z = 0 plane such that the point B is coincident with the origin, C is located at x = 0, y = 0, z = 1, and R is located at x = 1, y = 0, and z = 1, i.e. R extends in the direction of the positive x axis. This is the initial or reference orientation of the sphere.

The sphere may now be rolled along any continuous closed path in the z = 0 plane, not necessarily a simply connected path, in such a way that it neither slips nor twists, so that C returns to x = 0, y = 0, z = 1. In general, point B is no longer coincident with the origin, and point R no longer extends along the positive x axis. In fact, by selection of a suitable path, the sphere may be re-oriented from the initial orientation to any possible orientation of the sphere with C located at x = 0, y = 0, z = 1. [12] The system is therefore nonholonomic. The anholonomy may be represented by the doubly unique quaternion (q and −q) which, when applied to the points that represent the sphere, carries points B and R to their new positions.

Foucault pendulum

An additional example of a nonholonomic system is the Foucault pendulum. In the local coordinate frame the pendulum is swinging in a vertical plane with a particular orientation with respect to geographic north at the outset of the path. The implicit trajectory of the system is the line of latitude on the Earth where the pendulum is located. Even though the pendulum is stationary in the Earth frame, it is moving in a frame referred to the Sun and rotating in synchrony with the Earth's rate of revolution, so that the only apparent motion of the pendulum plane is that caused by the rotation of the Earth. This latter frame is considered to be an inertial reference frame, although it too is non-inertial in more subtle ways. The Earth frame is well known to be non-inertial, a fact made perceivable by the apparent presence of centrifugal forces and Coriolis forces.

Motion along the line of latitude is parameterized by the passage of time, and the Foucault pendulum's plane of oscillation appears to rotate about the local vertical axis as time passes. The angle of rotation of this plane at a time t with respect to the initial orientation is the anholonomy of the system. The anholonomy induced by a complete circuit of latitude is proportional to the solid angle subtended by that circle of latitude. The path need not be constrained to latitude circles. For example, the pendulum might be mounted in an airplane. The anholonomy is still proportional to the solid angle subtended by the path, which may now be quite irregular. The Foucault pendulum is a physical example of parallel transport.

Linear polarized light in an optical fiber

Take a length of optical fiber, say three meters, and lay it out in an absolutely straight line. When a vertically polarized beam is introduced at one end, it emerges from the other end, still polarized in the vertical direction. Mark the top of the fiber with a stripe, corresponding with the orientation of the vertical polarization.

Now, coil the fiber tightly around a cylinder ten centimeters in diameter. The path of the fiber now describes a helix which, like the circle, has constant curvature. The helix also has the interesting property of having constant torsion. As such the result is a gradual rotation of the fiber about the fiber's axis as the fiber's centerline progresses along the helix. Correspondingly, the stripe also twists about the axis of the helix.

When linearly polarized light is again introduced at one end, with the orientation of the polarization aligned with the stripe, it will, in general, emerge as linear polarized light aligned not with the stripe, but at some fixed angle to the stripe, dependent upon the length of the fiber, and the pitch and radius of the helix. This system is also nonholonomic, for we can easily coil the fiber down in a second helix and align the ends, returning the light to its point of origin. The anholonomy is therefore represented by the deviation of the angle of polarization with each circuit of the fiber. By suitable adjustment of the parameters, it is clear that any possible angular state can be produced.

Robotics

In robotics, nonholonomic has been particularly studied in the scope of motion planning and feedback linearization for mobile robots. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates comprising a distance and an angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a given polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic regarding the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state. The generalized velocities are the time derivatives of the generalized coordinates of the system. The adjective "generalized" distinguishes these parameters from the traditional use of the term "coordinate" to refer to Cartesian coordinates.

<span class="mw-page-title-main">Spherical pendulum</span>

In physics, a spherical pendulum is a higher dimensional analogue of the pendulum. It consists of a mass m moving without friction on the surface of a sphere. The only forces acting on the mass are the reaction from the sphere and gravity.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.

<span class="mw-page-title-main">Tissot's indicatrix</span> Characterization of distortion in map projections

In cartography, a Tissot's indicatrix is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

<span class="mw-page-title-main">Hopf bifurcation</span> Critical point where a periodic solution arises

In the mathematical theory of bifurcations, a Hopfbifurcation is a critical point where, as a parameter changes, a system's stability switches and a periodic solution arises. More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues—of the linearization around the fixed point—crosses the complex plane imaginary axis as a parameter crosses a threshold value. Under reasonably generic assumptions about the dynamical system, the fixed point becomes a small-amplitude limit cycle as the parameter changes.

In special functions, a topic in mathematics, spin-weighted spherical harmonics are generalizations of the standard spherical harmonics and—like the usual spherical harmonics—are functions on the sphere. Unlike ordinary spherical harmonics, the spin-weighted harmonics are U(1) gauge fields rather than scalar fields: mathematically, they take values in a complex line bundle. The spin-weighted harmonics are organized by degree l, just like ordinary spherical harmonics, but have an additional spin weights that reflects the additional U(1) symmetry. A special basis of harmonics can be derived from the Laplace spherical harmonics Ylm, and are typically denoted by sYlm, where l and m are the usual parameters familiar from the standard Laplace spherical harmonics. In this special basis, the spin-weighted spherical harmonics appear as actual functions, because the choice of a polar axis fixes the U(1) gauge ambiguity. The spin-weighted spherical harmonics can be obtained from the standard spherical harmonics by application of spin raising and lowering operators. In particular, the spin-weighted spherical harmonics of spin weight s = 0 are simply the standard spherical harmonics:

In classical mechanics, holonomic constraints are relations between the position variables that can be expressed in the following form:

In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions . There are two kinds: the regular solid harmonics, which are well-defined at the origin and the irregular solid harmonics, which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

<span class="mw-page-title-main">Lagrangian mechanics</span> Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, Mécanique analytique.

References

  1. Soltakhanov Yushkov Zegzhda, Sh.Kh Mikhail S. (May 2009). Mechanics of Non-holonomic Systems A New Class of Control Systems. Vol. 43. Springer Berlin Heidelberg. pp. XXIII. ISBN   9783540858478.
  2. Bryant, Robert L. (2006). "Geometry of manifolds with special holonomy: '100 years of holonomy'". 150 years of mathematics at Washington University in St. Louis. Contemporary Mathematics. Vol. 395. Providence, RI: American Mathematical Society. pp. 29–38. doi: 10.1090/conm/395/07414 . MR   2206889.
  3. Berry, Michael (December 1990). "Anticipations of Geometric Phase". Physics Today. 43 (12): 34–40. Bibcode:1990PhT....43l..34B. doi:10.1063/1.881219.
  4. Ferrers, N.M. (1872). "Extension of Lagrange's equations". Q. J. Pure Appl. Math. XII: 1–5.
  5. Routh, E. (1884). Advanced part of a Treatise on the Dynamics of a System of Rigid Bodies. London.{{cite book}}: CS1 maint: location missing publisher (link)
  6. Hertz, H. (1894). ie Prinzipien derMechanik in neuem Zusammenhange dargestellt.
  7. Chaplygin, S.A. (1897). "О движении тяжелого тела вращения по горизонтальнойплоскости" [A motion of heavy body of revolution on a horizontal plane]. антpопологии и этногpафии (in Russian). 1 (IX). отделения физических наук общества любителей естествознания: 1016.
  8. Voronets, P. (1901). "Об уравнениях движения для неголономных систем" [Equations of motion of nonholonomic systems]. Матем. Сб. (in Russian). 4 (22): 659686.
  9. 1 2 Torby, Bruce (1984). "Energy Methods". Advanced Dynamics for Engineers. HRW Series in Mechanical Engineering. United States of America: CBS College Publishing. ISBN   0-03-063366-4.
  10. Jack Sarfatti (2000-03-26). "Non Holonomic Constraints in Newtonian Mechanics" (PDF). Pedagogical Review from the Classics of Physics. stardrive.org. Archived from the original (PDF) on 2007-10-20. Retrieved 2007-09-22.
  11. Goldstein, Herbert (1980). Classical Mechanics (3rd ed.). United States of America: Addison Wesley. p. 16. ISBN   0-201-65702-3.
  12. The Nonholonomy of the Rolling Sphere, Brody Dylan Johnson, The American Mathematical Monthly, June–July 2007, vol. 114, pp. 500–508.
  13. Robot Motion Planning and Control, Jean-Paul Laumond (Ed.), 1998, Lecture Notes in Control and Information Sciences, Volume 229, Springer, doi : 10.1007/BFb0036069.