Feedback linearization

Last updated
Block diagram illustrating the feedback linearization of a nonlinear system Feedback linearization.svg
Block diagram illustrating the feedback linearization of a nonlinear system

Feedback linearization is a common strategy employed in nonlinear control to control nonlinear systems. Feedback linearization techniques may be applied to nonlinear control systems of the form

Contents

[1]

 

 

 

 

(1)

where is the state, are the inputs. The approach involves transforming a nonlinear control system into an equivalent linear control system through a change of variables and a suitable control input. In particular, one seeks a change of coordinates and control input so that the dynamics of in the coordinates take the form of a linear, controllable control system,

[2]

 

 

 

 

(2)

An outer-loop control strategy for the resulting linear control system can then be applied to achieve the control objective.

Feedback linearization of SISO systems

Here, consider the case of feedback linearization of a single-input single-output (SISO) system. Similar results can be extended to multiple-input multiple-output (MIMO) systems. In this case, and . The objective is to find a coordinate transformation that transforms the system (1) into the so-called normal form which will reveal a feedback law of the form

[3]

 

 

 

 

(3)

that will render a linear inputoutput map from the new input to the output . To ensure that the transformed system is an equivalent representation of the original system, the transformation must be a diffeomorphism. That is, the transformation must not only be invertible (i.e., bijective), but both the transformation and its inverse must be smooth so that differentiability in the original coordinate system is preserved in the new coordinate system. In practice, the transformation can be only locally diffeomorphic and the linearization results only hold in this smaller region.

Several tools are required to solve this problem.

Lie derivative

The goal of feedback linearization is to produce a transformed system whose states are the output and its first derivatives. To understand the structure of this target system, we use the Lie derivative. Consider the time derivative of (2), which can be computed using the chain rule,

Now we can define the Lie derivative of along as,

and similarly, the Lie derivative of along as,

With this new notation, we may express as,

Note that the notation of Lie derivatives is convenient when we take multiple derivatives with respect to either the same vector field, or a different one. For example,

and

Relative degree

In our feedback linearized system made up of a state vector of the output and its first derivatives, we must understand how the input enters the system. To do this, we introduce the notion of relative degree. Our system given by (1) and (2) is said to have relative degree at a point if,

in a neighbourhood of and all

Considering this definition of relative degree in light of the expression of the time derivative of the output , we can consider the relative degree of our system (1) and (2) to be the number of times we have to differentiate the output before the input appears explicitly. In an LTI system, the relative degree is the difference between the degree of the transfer function's denominator polynomial (i.e., number of poles) and the degree of its numerator polynomial (i.e., number of zeros).

Linearization by feedback

For the discussion that follows, we will assume that the relative degree of the system is . In this case, after differentiating the output times we have,

where the notation indicates the th derivative of . Because we assumed the relative degree of the system is , the Lie derivatives of the form for are all zero. That is, the input has no direct contribution to any of the first th derivatives.

The coordinate transformation that puts the system into normal form comes from the first derivatives. In particular,

transforms trajectories from the original coordinate system into the new coordinate system. So long as this transformation is a diffeomorphism, smooth trajectories in the original coordinate system will have unique counterparts in the coordinate system that are also smooth. Those trajectories will be described by the new system,

Hence, the feedback control law

renders a linear inputoutput map from to . The resulting linearized system

is a cascade of integrators, and an outer-loop control may be chosen using standard linear system methodology. In particular, a state-feedback control law of

where the state vector is the output and its first derivatives, results in the LTI system

with,

So, with the appropriate choice of , we can arbitrarily place the closed-loop poles of the linearized system.

Unstable zero dynamics

Feedback linearization can be accomplished with systems that have relative degree less than . However, the normal form of the system will include zero dynamics (i.e., states that are not observable from the output of the system) that may be unstable. In practice, unstable dynamics may have deleterious effects on the system (e.g., it may be dangerous for internal states of the system to grow unbounded). These unobservable states may be controllable or at least stable, and so measures can be taken to ensure these states do not cause problems in practice. Minimum phase systems provide some insight on zero dynamics.

Feedback linearization of MIMO systems

Although NDI is not necessarily restricted to this type of system, lets consider a nonlinear MIMO system that is affine in input , as is shown below.

 

 

 

 

(4)

It is assumed that the amount of inputs is the same as the amount of outputs. Lets say there are inputs and outputs. Then is an matrix, where are the vectors making up its columns. Furthermore, and . To use a similar derivation as for SISO, the system from Eq. 4 can be split up by isolating each 'th output , as is shown in Eq. 5.

 

 

 

 

(5)

Similarly to SISO, it can be shown that up until the ’th derivative of , the term . Here refers to the relative degree of the 'th output. Analogously, this gives

 

 

 

 

(6)

Working this out the same way as SISO, one finds that defining a virtual input such that

 

 

 

 

(7)

linearizes this 'th system. However, if , can obviously not be solved given a value for . However, setting up such an equation for all outputs, , results in equations of the form shown in Eq. 7. Combining these equation results in a matrix equation, which generally allows solving for the input , as is shown below.

 

 

 

 

(8)

See also

Further reading

Related Research Articles

The derivative is a fundamental tool of calculus that quantifies the sensitivity of change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation.

<span class="mw-page-title-main">Gradient</span> Multivariate derivative (mathematics)

In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field whose value at a point gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of . If the gradient of a function is non-zero at a point , the direction of the gradient is the direction in which the function increases most quickly from , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function may be defined by:

Controllability is an important property of a control system and plays a crucial role in many control problems, such as stabilization of unstable systems by feedback, or optimal control.

<span class="mw-page-title-main">Kalman filter</span> Algorithm that estimates unknowns from a series of measurements over time

For statistics and control theory, Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The filter is named after Rudolf E. Kálmán, who was one of the primary developers of its theory.

In vector calculus, the Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and the determinant are often referred to simply as the Jacobian in literature.

<span class="mw-page-title-main">Optimal control</span> Mathematical way of attaining a desired output from a dynamic system

Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the Moon with minimum fuel expenditure. Or the dynamical system could be a nation's economy, with the objective to minimize unemployment; the controls in this case could be fiscal and monetary policy. A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory.

In control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal that forces the system to "slide" along a cross-section of the system's normal behavior. The state-feedback control law is not a continuous function of time. Instead, it can switch from one continuous structure to another based on the current position in the state space. Hence, sliding mode control is a variable structure control method. The multiple control structures are designed so that trajectories always move toward an adjacent region with a different control structure, and so the ultimate trajectory will not exist entirely within one control structure. Instead, it will slide along the boundaries of the control structures. The motion of the system as it slides along these boundaries is called a sliding mode and the geometrical locus consisting of the boundaries is called the sliding (hyper)surface. In the context of modern control theory, any variable structure system, like a system under SMC, may be viewed as a special case of a hybrid dynamical system as the system both flows through a continuous state space but also moves through different discrete control modes.

In control engineering and system identification, a state-space representation is a mathematical model of a physical system specified as a set of input, output, and variables related by first-order differential equations or difference equations. Such variables, called state variables, evolve over time in a way that depends on the values they have at any given instant and on the externally imposed values of input variables. Output variables’ values depend on the state variable values and may also depend on the input variable values.

In multivariable calculus, the implicit function theorem is a tool that allows relations to be converted to functions of several real variables. It does so by representing the relation as the graph of a function. There may not be a single function whose graph can represent the entire relation, but there may be such a function on a restriction of the domain of the relation. The implicit function theorem gives a sufficient condition to ensure that there is such a function.

In statistics, propagation of uncertainty is the effect of variables' uncertainties on the uncertainty of a function based on them. When the variables are the values of experimental measurements they have uncertainties due to measurement limitations which propagate due to the combination of variables in the function.

Observability is a measure of how well internal states of a system can be inferred from knowledge of its external outputs. In control theory, the observability and controllability of a linear system are mathematical duals.

In control theory, a state observer or state estimator is a system that provides an estimate of the internal state of a given real system, from measurements of the input and output of the real system. It is typically computer-implemented, and provides the basis of many practical applications.

<span class="mw-page-title-main">Conjugate gradient method</span> Mathematical optimization algorithm

In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite. The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving partial differential equations or optimization problems.

In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices. It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities. This greatly simplifies operations such as finding the maximum or minimum of a multivariate function and solving systems of differential equations. The notation used here is commonly used in statistics and engineering, while the tensor index notation is preferred in physics.

In mathematical optimization, the Karush–Kuhn–Tucker (KKT) conditions, also known as the Kuhn–Tucker conditions, are first derivative tests for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.

Flatness in systems theory is a system property that extends the notion of controllability from linear systems to nonlinear dynamical systems. A system that has the flatness property is called a flat system. Flat systems have a (fictitious) flat output, which can be used to explicitly express all states and inputs in terms of the flat output and a finite number of its derivatives.

In control theory, backstepping is a technique developed circa 1990 by Myroslav Sparavalo, Petar V. Kokotovic, and others for designing stabilizing controls for a special class of nonlinear dynamical systems. These systems are built from subsystems that radiate out from an irreducible subsystem that can be stabilized using some other method. Because of this recursive structure, the designer can start the design process at the known-stable system and "back out" new controllers that progressively stabilize each outer subsystem. The process terminates when the final external control is reached. Hence, this process is known as backstepping.

In estimation theory, the extended Kalman filter (EKF) is the nonlinear version of the Kalman filter which linearizes about an estimate of the current mean and covariance. In the case of well defined transition models, the EKF has been considered the de facto standard in the theory of nonlinear state estimation, navigation systems and GPS.

In mathematics, a system of differential equations is a finite set of differential equations. Such a system can be either linear or non-linear. Also, such a system can be either a system of ordinary differential equations or a system of partial differential equations.

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

References

  1. Isidori, Alberto (1995). Nonlinear Control Systems (Third ed.). Springer-Verlag London. p. 5. ISBN   978-1-4471-3909-6.
  2. H. Nijmeijer and A. van der Shaft, Nonlinear Dynamical Control Systems, Springer-Verlag, p. 163, 2016.
  3. Isidori, Alberto (1995). Nonlinear Control Systems (Third ed.). Springer-Verlag London. p. 147. ISBN   978-1-4471-3909-6.