Constructible function

Last updated

In complexity theory, a time-constructible function is a function f from natural numbers to natural numbers with the property that f(n) can be constructed from n by a Turing machine in the time of order f(n). The purpose of such a definition is to exclude functions that do not provide an upper bound on the runtime of some Turing machine. [1]

Contents

Time-constructible definitions

There are two different definitions of a time-constructible function. In the first definition, a function f is called time-constructible if there exists a positive integer n0 and Turing machine M which, given a string 1n consisting of n ones, stops after exactly f(n) steps for all nn0. In the second definition, a function f is called time-constructible if there exists a Turing machine M which, given a string 1n, outputs the binary representation of f(n) in O (f(n)) time (a unary representation may be used instead, since the two can be interconverted in O(f(n)) time). [1]

There is also a notion of a fully time-constructible function. A function f is called fully time-constructible if there exists a Turing machine M which, given a string 1n consisting of n ones, stops after exactly f(n) steps. [2] This definition is slightly less general than the first two but, for most applications, either definition can be used. [3]

Space- definitions

Similarly, a function f is space-constructible if there exists a positive integer n0 and a Turing machine M which, given a string 1n consisting of n ones, halts after using exactly f(n) cells for all nn0. Equivalently, a function f is space-constructible if there exists a Turing machine M which, given a string 1n consisting of n ones, outputs the binary (or unary) representation of f(n), while using only O (f(n)) space. [1]

Also, a function f is fully space-constructible if there exists a Turing machine M which, given a string 1n consisting of n ones, halts after using exactly f(n) cells. [2]

Examples

All the commonly used functions f(n) (such as n, nk, 2n) are time- and space-constructible, as long as f(n) is at least cn for a constant c > 0. No function which is o (n) can be time-constructible unless it is eventually constant, since there is insufficient time to read the entire input. However, is a space-constructible function.

Applications

Time-constructible functions are used in results from complexity theory such as the time hierarchy theorem. They are important because the time hierarchy theorem relies on Turing machines that must determine in O (f(n)) time whether an algorithm has taken more than f(n) steps. This is, of course, impossible without being able to calculate f(n) in that time. Such results are typically true for all natural functions f but not necessarily true for artificially constructed f. To formulate them precisely, it is necessary to have a precise definition for a natural function f for which the theorem is true. Time-constructible functions are often used to provide such a definition.

Space-constructible functions are used similarly, for example in the space hierarchy theorem.

This article incorporates material from constructible on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Related Research Articles

<span class="mw-page-title-main">Kolmogorov complexity</span> Measure of algorithmic complexity

In algorithmic information theory, the Kolmogorov complexity of an object, such as a piece of text, is the length of a shortest computer program that produces the object as output. It is a measure of the computational resources needed to specify the object, and is also known as algorithmic complexity, Solomonoff–Kolmogorov–Chaitin complexity, program-size complexity, descriptive complexity, or algorithmic entropy. It is named after Andrey Kolmogorov, who first published on the subject in 1963 and is a generalization of classical information theory.

In computational complexity theory, a branch of computer science, bounded-error probabilistic polynomial time (BPP) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability bounded by 1/3 for all instances. BPP is one of the largest practical classes of problems, meaning most problems of interest in BPP have efficient probabilistic algorithms that can be run quickly on real modern machines. BPP also contains P, the class of problems solvable in polynomial time with a deterministic machine, since a deterministic machine is a special case of a probabilistic machine.

In the computer science subfield of algorithmic information theory, a Chaitin constant or halting probability is a real number that, informally speaking, represents the probability that a randomly constructed program will halt. These numbers are formed from a construction due to Gregory Chaitin.

In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm.

<span class="mw-page-title-main">NP (complexity)</span> Complexity class used to classify decision problems

In computational complexity theory, NP is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.

In theoretical computer science and formal language theory, a regular language is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science.

In computational complexity theory, the complexity class EXPTIME (sometimes called EXP or DEXPTIME) is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2p(n)) time, where p(n) is a polynomial function of n.

In computational complexity theory, the time hierarchy theorems are important statements about time-bounded computation on Turing machines. Informally, these theorems say that given more time, a Turing machine can solve more problems. For example, there are problems that can be solved with n2 time but not n time, where n is the input length.

<span class="mw-page-title-main">Arithmetical hierarchy</span> Hierarchy of complexity classes for formulas defining sets

In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy was invented independently by Kleene (1943) and Mostowski (1946).

<span class="mw-page-title-main">Complexity class</span> Set of problems in computational complexity theory

In computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory.

In computational complexity theory, non-deterministic space or NSPACE is the computational resource describing the memory space for a non-deterministic Turing machine. It is the non-deterministic counterpart of DSPACE.

In computational complexity theory, DSPACE or SPACE is the computational resource describing the resource of memory space for a deterministic Turing machine. It represents the total amount of memory space that a "normal" physical computer would need to solve a given computational problem with a given algorithm.

In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states that the Boolean satisfiability problem is NP-complete. That is, it is in NP, and any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the Boolean satisfiability problem.

In computational complexity theory, the space hierarchy theorems are separation results that show that both deterministic and nondeterministic machines can solve more problems in (asymptotically) more space, subject to certain conditions. For example, a deterministic Turing machine can solve more decision problems in space n log n than in space n. The somewhat weaker analogous theorems for time are the time hierarchy theorems.

In computational complexity theory, an advice string is an extra input to a Turing machine that is allowed to depend on the length n of the input, but not on the input itself. A decision problem is in the complexity class P/f(n) if there is a polynomial time Turing machine M with the following property: for any n, there is an advice string A of length f(n) such that, for any input x of length n, the machine M correctly decides the problem on the input x, given x and A.

In computational complexity theory, an alternating Turing machine (ATM) is a non-deterministic Turing machine (NTM) with a rule for accepting computations that generalizes the rules used in the definition of the complexity classes NP and co-NP. The concept of an ATM was set forth by Chandra and Stockmeyer and independently by Kozen in 1976, with a joint journal publication in 1981.

Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the Turing-computable functions and the general recursive functions.

In computability theory, a decider is a Turing machine that halts for every input. A decider is also called a total Turing machine as it represents a total function.

<span class="mw-page-title-main">Boolean circuit</span> Model of computation

In computational complexity theory and circuit complexity, a Boolean circuit is a mathematical model for combinational digital logic circuits. A formal language can be decided by a family of Boolean circuits, one circuit for each possible input length.

In computational complexity theory, a unary language or tally language is a formal language where all strings have the form 1k, where "1" can be any fixed symbol. For example, the language {1, 111, 1111} is unary, as is the language {1k | k is prime}. The complexity class of all such languages is sometimes called TALLY.

References

  1. 1 2 3 Goldreich, Oded (2008). Computational Complexity: A Conceptual Perspective. Cambridge University Press. pp. 130, 139. ISBN   978-0-521-88473-0.
  2. 1 2 Homer, Steven; Selman, Alan L. (2011). Computability and Complexity Theory (Second ed.). Springer. ISBN   978-1-4614-0681-5.
  3. Balcázar, José Luis; Díaz, Josep; Gabarró, Joaquim (1988). Structural Complexity I. Springer-Verlag. ISBN   3-540-18622-0.