Coset leader

Last updated

In coding theory, a coset leader is a word of minimum weight in any particular coset - that is, a word with the lowest amount of non-zero entries. Sometimes there are several words of equal minimum weight in a coset, and in that case, any one of those words may be chosen to be the coset leader.

Coset leaders are used in the construction of a standard array for a linear code, which can then be used to decode received vectors. For a received vector y, the decoded message is y - e, where e is the coset leader of y. Coset leaders can also be used to construct a fast decoding strategy. For each coset leader u we calculate the syndrome uH. When we receive v we evaluate vH and find the matching syndrome. The corresponding coset leader is the most likely error pattern and we assume that v+u was the codeword sent.

Related Research Articles

<span class="mw-page-title-main">Hamming distance</span> Number of bits that differ between two strings

In information theory, the Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or the minimum number of errors that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming.

<span class="mw-page-title-main">Coset</span> Disjoint, equal-size subsets of a groups underlying set

In mathematics, specifically group theory, a subgroup H of a group G may be used to decompose the underlying set of G into disjoint, equal-size subsets called cosets. There are left cosets and right cosets. Cosets have the same number of elements (cardinality) as does H. Furthermore, H itself is both a left coset and a right coset. The number of left cosets of H in G is equal to the number of right cosets of H in G. This common value is called the index of H in G and is usually denoted by [G : H].

<span class="mw-page-title-main">Coding theory</span> Study of the properties of codes and their fitness

Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied by various scientific disciplines—such as information theory, electrical engineering, mathematics, linguistics, and computer science—for the purpose of designing efficient and reliable data transmission methods. This typically involves the removal of redundancy and the correction or detection of errors in the transmitted data.

In geometry, an affine plane is a system of points and lines that satisfy the following axioms:

In cryptography, the McEliece cryptosystem is an asymmetric encryption algorithm developed in 1978 by Robert McEliece. It was the first such scheme to use randomization in the encryption process. The algorithm has never gained much acceptance in the cryptographic community, but is a candidate for "post-quantum cryptography", as it is immune to attacks using Shor's algorithm and – more generally – measuring coset states using Fourier sampling.

The Hamming weight of a string is the number of symbols that are different from the zero-symbol of the alphabet used. It is thus equivalent to the Hamming distance from the all-zero string of the same length. For the most typical case, a string of bits, this is the number of 1's in the string, or the digit sum of the binary representation of a given number and the ₁ norm of a bit vector. In this binary case, it is also called the population count, popcount, sideways sum, or bit summation.

In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way. Such limitations often take the form of bounds that relate different parameters of the block code to each other, such as its rate and its ability to detect and correct errors.

In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types. Linear codes allow for more efficient encoding and decoding algorithms than other codes.

In mathematics and computer science, in the field of coding theory, the Hamming bound is a limit on the parameters of an arbitrary block code: it is also known as the sphere-packing bound or the volume bound from an interpretation in terms of packing balls in the Hamming metric into the space of all possible words. It gives an important limitation on the efficiency with which any error-correcting code can utilize the space in which its code words are embedded. A code that attains the Hamming bound is said to be a perfect code.

In coding theory, decoding is the process of translating received messages into codewords of a given code. There have been many common methods of mapping messages to codewords. These are often used to recover messages sent over a noisy channel, such as a binary symmetric channel.

Reed–Muller codes are error-correcting codes that are used in wireless communications applications, particularly in deep-space communication. Moreover, the proposed 5G standard relies on the closely related polar codes for error correction in the control channel. Due to their favorable theoretical and mathematical properties, Reed–Muller codes have also been extensively studied in theoretical computer science.

<span class="mw-page-title-main">Hadamard code</span> Error-correcting code

The Hadamard code is an error-correcting code named after Jacques Hadamard that is used for error detection and correction when transmitting messages over very noisy or unreliable channels. In 1971, the code was used to transmit photos of Mars back to Earth from the NASA space probe Mariner 9. Because of its unique mathematical properties, the Hadamard code is not only used by engineers, but also intensely studied in coding theory, mathematics, and theoretical computer science. The Hadamard code is also known under the names Walsh code, Walsh family, and Walsh–Hadamard code in recognition of the American mathematician Joseph Leonard Walsh.

In coding theory, a parity-check matrix of a linear block code C is a matrix which describes the linear relations that the components of a codeword must satisfy. It can be used to decide whether a particular vector is a codeword and is also used in decoding algorithms.

In coding theory, concatenated codes form a class of error-correcting codes that are derived by combining an inner code and an outer code. They were conceived in 1966 by Dave Forney as a solution to the problem of finding a code that has both exponentially decreasing error probability with increasing block length and polynomial-time decoding complexity. Concatenated codes became widely used in space communications in the 1970s.

In coding theory, list decoding is an alternative to unique decoding of error-correcting codes for large error rates. The notion was proposed by Elias in the 1950s. The main idea behind list decoding is that the decoding algorithm instead of outputting a single possible message outputs a list of possibilities one of which is correct. This allows for handling a greater number of errors than that allowed by unique decoding.

In coding theory, a standard array is a by array that lists all elements of a particular vector space. Standard arrays are used to decode linear codes; i.e. to find the corresponding codeword for any received vector.

Distributed source coding (DSC) is an important problem in information theory and communication. DSC problems regard the compression of multiple correlated information sources that do not communicate with each other. By modeling the correlation between multiple sources at the decoder side together with channel codes, DSC is able to shift the computational complexity from encoder side to decoder side, therefore provide appropriate frameworks for applications with complexity-constrained sender, such as sensor networks and video/multimedia compression. One of the main properties of distributed source coding is that the computational burden in encoders is shifted to the joint decoder.

In cryptography, the fast syndrome-based hash functions (FSB) are a family of cryptographic hash functions introduced in 2003 by Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. Unlike most other cryptographic hash functions in use today, FSB can to a certain extent be proven to be secure. More exactly, it can be proven that breaking FSB is at least as difficult as solving a certain NP-complete problem known as regular syndrome decoding so FSB is provably secure. Though it is not known whether NP-complete problems are solvable in polynomial time, it is often assumed that they are not.

In coding theory, generalized minimum-distance (GMD) decoding provides an efficient algorithm for decoding concatenated codes, which is based on using an errors-and-erasures decoder for the outer code.

In coding theory, burst error-correcting codes employ methods of correcting burst errors, which are errors that occur in many consecutive bits rather than occurring in bits independently of each other.

References