Covariant return type

Last updated

In object-oriented programming, a covariant return type of a method is one that can be replaced by a "narrower" (derived) type when the method is overridden in a subclass. A notable language in which this is a fairly common paradigm is C++.

Contents

C# supports return type covariance as of version 9.0. [1] Covariant return types have been (partially) allowed in the Java language since the release of JDK5.0, [2] so the following example wouldn't compile on a previous release:

// Classes used as return types:classA{}classBextendsA{}// "Class B is narrower than class A"// Classes demonstrating method overriding:classC{AgetFoo(){returnnewA();}}classDextendsC{// Overriding getFoo() in parent class CBgetFoo(){returnnewB();}}

More specifically, covariant (wide to narrower) or contravariant (narrow to wider) return type refers to a situation where the return type of the overriding method is changed to a type related to (but different from) the return type of the original overridden method. The relationship between the two covariant return types is usually one which allows substitution of the one type with the other, following the Liskov substitution principle. This usually implies that the return types of the overriding methods will be subtypes of the return type of the overridden method. The above example specifically illustrates such a case. If substitution is not allowed, the return type is invariant and causes a compile error.

UML covariant return type.svg

Another example of covariance with the help of built in Object and String class of Java:

classParent{publicObjectgetFoo(){returnnull;}}classChildextendsParent{// String is child of the greater Object classpublicStringgetFoo(){return"This is a string";}// Driver codepublicstaticvoidmain(String[]args){Childchild=newChild();System.out.println(child.getFoo());}}

See also

Related Research Articles

Multiple inheritance is a feature of some object-oriented computer programming languages in which an object or class can inherit features from more than one parent object or parent class. It is distinct from single inheritance, where an object or class may only inherit from one particular object or class.

In object-oriented (OO) and functional programming, an immutable object is an object whose state cannot be modified after it is created. This is in contrast to a mutable object, which can be modified after it is created. In some cases, an object is considered immutable even if some internally used attributes change, but the object's state appears unchanging from an external point of view. For example, an object that uses memoization to cache the results of expensive computations could still be considered an immutable object.

A method in object-oriented programming (OOP) is a procedure associated with an object, and generally also a message. An object consists of state data and behavior; these compose an interface, which specifies how the object may be used. A method is a behavior of an object parametrized by a user.

In computer science, reflective programming or reflection is the ability of a process to examine, introspect, and modify its own structure and behavior.

In object-oriented programming such as is often used in C++ and Object Pascal, a virtual function or virtual method is an inheritable and overridable function or method that is dispatched dynamically. Virtual functions are an important part of (runtime) polymorphism in object-oriented programming (OOP). They allow for the execution of target functions that were not precisely identified at compile time.

This article compares two programming languages: C# with Java. While the focus of this article is mainly the languages and their features, such a comparison will necessarily also consider some features of platforms and libraries. For a more detailed comparison of the platforms, see Comparison of the Java and .NET platforms.

In class-based, object-oriented programming, a constructor is a special type of function called to create an object. It prepares the new object for use, often accepting arguments that the constructor uses to set required member variables.

<span class="mw-page-title-main">Method overriding</span> Language feature in object-oriented programming

Method overriding, in object-oriented programming, is a language feature that allows a subclass or child class to provide a specific implementation of a method that is already provided by one of its superclasses or parent classes. In addition to providing data-driven algorithm-determined parameters across virtual network interfaces, it also allows for a specific type of polymorphism (subtyping). The implementation in the subclass overrides (replaces) the implementation in the superclass by providing a method that has same name, same parameters or signature, and same return type as the method in the parent class. The version of a method that is executed will be determined by the object that is used to invoke it. If an object of a parent class is used to invoke the method, then the version in the parent class will be executed, but if an object of the subclass is used to invoke the method, then the version in the child class will be executed. This helps in preventing problems associated with differential relay analytics which would otherwise rely on a framework in which method overriding might be obviated. Some languages allow a programmer to prevent a method from being overridden.

<span class="mw-page-title-main">Java syntax</span> Set of rules defining correctly structured program

The syntax of Java is the set of rules defining how a Java program is written and interpreted.

Many programming language type systems support subtyping. For instance, if the type Cat is a subtype of Animal, then an expression of type Cat should be substitutable wherever an expression of type Animal is used.

In some programming languages, const is a type qualifier, which indicates that the data is read-only. While this can be used to declare constants, const in the C family of languages differs from similar constructs in other languages in that it is part of the type, and thus has complicated behavior when combined with pointers, references, composite data types, and type-checking. In other languages, the data is not in a single memory location, but copied at compile time for each use. Languages which use it include C, C++, D, JavaScript, Julia, and Rust.

In the Java programming language, the final keyword is used in several contexts to define an entity that can only be assigned once.

In object-oriented programming, inheritance is the mechanism of basing an object or class upon another object or class, retaining similar implementation. Also defined as deriving new classes from existing ones such as super class or base class and then forming them into a hierarchy of classes. In most class-based object-oriented languages like C++, an object created through inheritance, a "child object", acquires all the properties and behaviors of the "parent object", with the exception of: constructors, destructors, overloaded operators and friend functions of the base class. Inheritance allows programmers to create classes that are built upon existing classes, to specify a new implementation while maintaining the same behaviors, to reuse code and to independently extend original software via public classes and interfaces. The relationships of objects or classes through inheritance give rise to a directed acyclic graph.

Call super is a code smell or anti-pattern of some object-oriented programming languages. Call super is a design pattern in which a particular class stipulates that in a derived subclass, the user is required to override a method and call back the overridden function itself at a particular point. The overridden method may be intentionally incomplete, and reliant on the overriding method to augment its functionality in a prescribed manner. However, the fact that the language itself may not be able to enforce all conditions prescribed on this call is what makes this an anti-pattern.

this, self, and Me are keywords used in some computer programming languages to refer to the object, class, or other entity which the currently running code is a part of. The entity referred to thus depends on the execution context. Different programming languages use these keywords in slightly different ways. In languages where a keyword like "this" is mandatory, the keyword is the only way to access data and methods stored in the current object. Where optional, these keywords can disambiguate variables and functions with the same name.

In compiler optimization, escape analysis is a method for determining the dynamic scope of pointers – where in the program a pointer can be accessed. It is related to pointer analysis and shape analysis.

Generics are a facility of generic programming that were added to the Java programming language in 2004 within version J2SE 5.0. They were designed to extend Java's type system to allow "a type or method to operate on objects of various types while providing compile-time type safety". The aspect compile-time type safety was not fully achieved, since it was shown in 2016 that it is not guaranteed in all cases.

In software engineering, a fluent interface is an object-oriented API whose design relies extensively on method chaining. Its goal is to increase code legibility by creating a domain-specific language (DSL). The term was coined in 2005 by Eric Evans and Martin Fowler.

This article describes the syntax of the C# programming language. The features described are compatible with .NET Framework and Mono.

C# 4.0 is a version of the C# programming language that was released on April 11, 2010. Microsoft released the 4.0 runtime and development environment Visual Studio 2010. The major focus of C# 4.0 is interoperability with partially or fully dynamically typed languages and frameworks, such as the Dynamic Language Runtime and COM.

References

  1. "Covariant Returns". Microsoft Docs. Retrieved 8 September 2021.
  2. bridge Methods were introduced to circumvent problems introduced by polymorphism and the new generic type erasure