In the foundations of mathematics, a covering lemma is used to prove that the non-existence of certain large cardinals leads to the existence of a canonical inner model, called the core model, that is, in a sense, maximal and approximates the structure of the von Neumann universe V. A covering lemma asserts that under some particular anti-large cardinal assumption, the core model exists and is maximal in a sense that depends on the chosen large cardinal. The first such result was proved by Ronald Jensen for the constructible universe assuming 0# does not exist, which is now known as Jensen's covering theorem.
For example, if there is no inner model for a measurable cardinal, then the Dodd–Jensen core model, KDJ is the core model and satisfies the covering property, that is for every uncountable set x of ordinals, there is y such that y ⊃ x, y has the same cardinality as x, and y ∈ KDJ. (If 0# does not exist, then KDJ = L.)
If the core model K exists (and has no Woodin cardinals), then
For core models without overlapping total extenders, the systems of indiscernibles are well understood. Although (if K has an inaccessible limit of measurable cardinals), the system may depend on the set to be covered, it is well-determined and unique in a weaker sense. One application of the covering is counting the number of (sequences of) indiscernibles, which gives optimal lower bounds for various failures of the singular cardinals hypothesis. For example, if K does not have overlapping total extenders, and κ is singular strong limit, and 2κ = κ++, then κ has Mitchell order at least κ++ in K. Conversely, a failure of the singular cardinal hypothesis can be obtained (in a generic extension) from κ with o(κ) = κ++.
For core models with overlapping total extenders (that is with a cardinal strong up to a measurable one), the systems of indiscernibles are poorly understood, and applications (such as the weak covering) tend to avoid rather than analyze the indiscernibles.
If K exists, then every regular Jónsson cardinal is Ramsey in K. Every singular cardinal that is regular in K is measurable in K.
Also, if the core model K(X) exists above a set X of ordinals, then it has the above discussed covering properties above X.
In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.
In mathematics, an uncountable set is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers.
In mathematics, a Mahlo cardinal is a certain kind of large cardinal number. Mahlo cardinals were first described by Paul Mahlo. As with all large cardinals, none of these varieties of Mahlo cardinals can be proved to exist by ZFC.
In the mathematical discipline of set theory, 0# is the set of true formulae about indiscernibles and order-indiscernibles in the Gödel constructible universe. It is often encoded as a subset of the integers, or as a subset of the hereditarily finite sets, or as a real number. Its existence is unprovable in ZFC, the standard form of axiomatic set theory, but follows from a suitable large cardinal axiom. It was first introduced as a set of formulae in Silver's 1966 thesis, later published as Silver (1971), where it was denoted by Σ, and rediscovered by Solovay, who considered it as a subset of the natural numbers and introduced the notation O#.
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, ∅ and all singletons {α}, α ∈ κ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large.
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They are named after the symbol used to denote them, the Hebrew letter aleph.
In mathematics, a Ramsey cardinal is a certain kind of large cardinal number introduced by Erdős & Hajnal (1962) and named after Frank P. Ramsey, whose theorem establishes that ω enjoys a certain property which Ramsey cardinals generalize to the uncountable case.
In mathematics, in set theory, the constructible universe, denoted by L, is a particular class of sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchyLα . It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.
In mathematics, limit cardinals are certain cardinal numbers. A cardinal number λ is a weak limit cardinal if λ is neither a successor cardinal nor zero. This means that one cannot "reach" λ from another cardinal by repeated successor operations. These cardinals are sometimes called simply "limit cardinals" when the context is clear.
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular.
In set theory, a tree is a partially ordered set (T, <) such that for each t ∈ T, the set {s ∈ T : s < t} is well-ordered by the relation <. Frequently trees are assumed to have only one root, as the typical questions investigated in this field are easily reduced to questions about single-rooted trees.
In mathematics, specifically set theory and model theory, a stationary set is a set that is not too small in the sense that it intersects all club sets, and is analogous to a set of non-zero measure in measure theory. There are at least three closely related notions of stationary set, depending on whether one is looking at subsets of an ordinal, or subsets of something of given cardinality, or a powerset.
Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists.
In set theory, the core model is a definable inner model of the universe of all sets. Even though set theorists refer to "the core model", it is not a uniquely identified mathematical object. Rather, it is a class of inner models that under the right set-theoretic assumptions have very special properties, most notably covering properties. Intuitively, the core model is "the largest canonical inner model there is" and is typically associated with a large cardinal notion. If Φ is a large cardinal notion, then the phrase "core model below Φ" refers to the definable inner model that exhibits the special properties under the assumption that there does not exist a cardinal satisfying Φ. The core model program seeks to analyze large cardinal axioms by determining the core models below them.
In set theory, an Aronszajn tree is an uncountable tree with no uncountable branches and no uncountable levels. For example, every Suslin tree is an Aronszajn tree. More generally, for a cardinal κ, a κ-Aronszajn tree is a tree of height κ in which all levels have size less than κ and all branches have height less than κ. They are named for Nachman Aronszajn, who constructed an Aronszajn tree in 1934; his construction was described by Kurepa (1935).
Menachem Magidor is an Israeli mathematician who specializes in mathematical logic, in particular set theory. He served as President of the Hebrew University of Jerusalem, was President of the Association for Symbolic Logic from 1996 to 1998, and is currently the President of the Division for Logic, Methodology and Philosophy of Science and Technology of the International Union for History and Philosophy of Science. In 2016 he was elected an honorary foreign member of the American Academy of Arts and Sciences. In 2018 he received the Solomon Bublick Award.
Jack Howard Silver was a set theorist and logician at the University of California, Berkeley.
In set theory, an ordinal number, or ordinal, is one generalization of the concept of a natural number that is used to describe a way to arrange a collection of objects in order, one after another. Any finite collection of objects can be put in order just by the process of counting: labeling the objects with distinct natural numbers. Ordinal numbers are thus the "labels" needed to arrange collections of objects in order.
This is a glossary of set theory.