This article needs additional citations for verification .(September 2024) |
In set theory, the core model is a definable inner model of the universe of all sets. Even though set theorists refer to "the core model", it is not a uniquely identified mathematical object. Rather, it is a class of inner models that under the right set-theoretic assumptions have very special properties, most notably covering properties. Intuitively, the core model is "the largest canonical inner model there is", [1] (here "canonical" is an undefined term) [2] p. 28 and is typically associated with a large cardinal notion. If Φ is a large cardinal notion, then the phrase "core model below Φ" refers to the definable inner model that exhibits the special properties under the assumption that there does not exist a cardinal satisfying Φ. The core model program seeks to analyze large cardinal axioms by determining the core models below them.
The first core model was Kurt Gödel's constructible universe L. Ronald Jensen proved the covering lemma for L in the 1970s under the assumption of the non-existence of zero sharp, establishing that L is the "core model below zero sharp". The work of Solovay isolated another core model L[U], for U an ultrafilter on a measurable cardinal (and its associated "sharp", zero dagger). Together with Tony Dodd, Jensen constructed the Dodd–Jensen core model ("the core model below a measurable cardinal") and proved the covering lemma for it and a generalized covering lemma for L[U].
Mitchell used coherent sequences of measures to develop core models containing multiple or higher-order measurables. Still later, the Steel core model used extenders and iteration trees to construct a core model below a Woodin cardinal.
Core models are constructed by transfinite recursion from small fragments of the core model called mice. An important ingredient of the construction is the comparison lemma that allows giving a wellordering of the relevant mice.
At the level of strong cardinals and above, one constructs an intermediate countably certified core model Kc, and then, if possible, extracts K from Kc.
Kc (and hence K) is a fine-structural countably iterable extender model below long extenders. (It is not currently known how to deal with long extenders, which establish that a cardinal is superstrong.) Here countable iterability means ω1+1 iterability for all countable elementary substructures of initial segments, and it suffices to develop basic theory, including certain condensation properties. The theory of such models is canonical and well understood. They satisfy GCH, the diamond principle for all stationary subsets of regular cardinals, the square principle (except at subcompact cardinals), and other principles holding in L.
Kc is maximal in several senses. Kc computes the successors of measurable and many singular cardinals correctly. Also, it is expected that under an appropriate weakening of countable certifiability, Kc would correctly compute the successors of all weakly compact and singular strong limit cardinals correctly. If V is closed under a mouse operator (an inner model operator), then so is Kc. Kc has no sharp: There is no natural non-trivial elementary embedding of Kc into itself. (However, unlike K, Kc may be elementarily self-embeddable.)
If in addition there are also no Woodin cardinals in this model (except in certain specific cases, it is not known how the core model should be defined if Kc has Woodin cardinals), we can extract the actual core model K. K is also its own core model. K is locally definable and generically absolute: For every generic extension of V, for every cardinal κ>ω1 in V[G], K as constructed in H(κ) of V[G] equals K∩H(κ). (This would not be possible had K contained Woodin cardinals). K is maximal, universal, and fully iterable. This implies that for every iterable extender model M (called a mouse), there is an elementary embedding M→N and of an initial segment of K into N, and if M is universal, the embedding is of K into M.
It is conjectured that if K exists and V is closed under a sharp operator M, then K is Σ11 correct allowing real numbers in K as parameters and M as a predicate. That amounts to Σ13 correctness (in the usual sense) if M is x→x#.
The core model can also be defined above a particular set of ordinals X: X belongs to K(X), but K(X) satisfies the usual properties of K above X. If there is no iterable inner model with ω Woodin cardinals, then for some X, K(X) exists. The above discussion of K and Kc generalizes to K(X) and Kc(X).
Conjecture:
Partial results for the conjecture are that:
If V has Woodin cardinals but not cardinals strong past a Woodin one, then under appropriate circumstances (a candidate for) K can be constructed by constructing K below each Woodin cardinal (and below the class of all ordinals) κ but above that K as constructed below the supremum of Woodin cardinals below κ. The candidate core model is not fully iterable (iterability fails at Woodin cardinals) or generically absolute, but otherwise behaves like K.
In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.
In mathematics, Suslin's problem is a question about totally ordered sets posed by Mikhail Yakovlevich Suslin and published posthumously. It has been shown to be independent of the standard axiomatic system of set theory known as ZFC; Solovay & Tennenbaum (1971) showed that the statement can neither be proven nor disproven from those axioms, assuming ZF is consistent.
In the mathematical discipline of set theory, 0# is the set of true formulae about indiscernibles and order-indiscernibles in the Gödel constructible universe. It is often encoded as a subset of the natural numbers, or as a subset of the hereditarily finite sets, or as a real number. Its existence is unprovable in ZFC, the standard form of axiomatic set theory, but follows from a suitable large cardinal axiom. It was first introduced as a set of formulae in Silver's 1966 thesis, later published as Silver (1971), where it was denoted by Σ, and rediscovered by Solovay, who considered it as a subset of the natural numbers and introduced the notation O#.
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, ∅ and all singletons {α} are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large.
In set theory, a strong cardinal is a type of large cardinal. It is a weakening of the notion of a supercompact cardinal.
In set theory, a Woodin cardinal is a cardinal number such that for all functions , there exists a cardinal with and an elementary embedding from the Von Neumann universe into a transitive inner model with critical point and .
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ).
In the foundations of mathematics, a covering lemma is used to prove that the non-existence of certain large cardinals leads to the existence of a canonical inner model, called the core model, that is, in a sense, maximal and approximates the structure of the von Neumann universe V. A covering lemma asserts that under some particular anti-large cardinal assumption, the core model exists and is maximal in a sense that depends on the chosen large cardinal. The first such result was proved by Ronald Jensen for the constructible universe assuming 0# does not exist, which is now known as Jensen's covering theorem.
In mathematics, and particularly in axiomatic set theory, the diamond principle◊ is a combinatorial principle introduced by Ronald Jensen in Jensen (1972) that holds in the constructible universe and that implies the continuum hypothesis. Jensen extracted the diamond principle from his proof that the axiom of constructibility implies the existence of a Suslin tree.
Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness".
In set theory, a branch of mathematics, a Reinhardt cardinal is a kind of large cardinal. Reinhardt cardinals are considered under ZF, because they are inconsistent with ZFC. They were suggested by American mathematician William Nelson Reinhardt (1939–1998).
In the mathematical field of set theory, the proper forcing axiom (PFA) is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings.
In set theory, an Aronszajn tree is a tree of uncountable height with no uncountable branches and no uncountable levels. For example, every Suslin tree is an Aronszajn tree. More generally, for a cardinal κ, a κ-Aronszajn tree is a tree of height κ in which all levels have size less than κ and all branches have height less than κ. They are named for Nachman Aronszajn, who constructed an Aronszajn tree in 1934; his construction was described by Kurepa (1935).
In the mathematical field of set theory, the Solovay model is a model constructed by Robert M. Solovay in which all of the axioms of Zermelo–Fraenkel set theory (ZF) hold, exclusive of the axiom of choice, but in which all sets of real numbers are Lebesgue measurable. The construction relies on the existence of an inaccessible cardinal.
In set theory, Jensen's covering theorem states that if 0# does not exist then every uncountable set of ordinals is contained in a constructible set of the same cardinality. Informally this conclusion says that the constructible universe is close to the universe of all sets. The first proof appeared in. Silver later gave a fine-structure-free proof using his machines and finally Magidor gave an even simpler proof.
This is a glossary of terms and definitions related to the topic of set theory.