Subcompact cardinal

Last updated

In mathematics, a subcompact cardinal is a certain kind of large cardinal number.

A cardinal number κ is subcompact if and only if for every A  H(κ+) there is a non-trivial elementary embedding j:(H(μ+), B) → (H(κ+), A) (where H(κ+) is the set of all sets of cardinality hereditarily less than κ+) with critical point μ and j(μ) = κ.

Analogously, κ is a quasicompact cardinal if and only if for every A  H(κ+) there is a non-trivial elementary embedding j:(H(κ+), A) → (H(μ+), B) with critical point κ and j(κ) = μ.

H(λ) consists of all sets whose transitive closure has cardinality less than λ.

Every quasicompact cardinal is subcompact. Quasicompactness is a strengthening of subcompactness in that it projects large cardinal properties upwards. The relationship is analogous to that of extendible versus supercompact cardinals. Quasicompactness may be viewed as a strengthened or "boldface" version of 1-extendibility. Existence of subcompact cardinals implies existence of many 1-extendible cardinals, and hence many superstrong cardinals. Existence of a 2κ-supercompact cardinal κ implies existence of many quasicompact cardinals.

Subcompact cardinals are noteworthy as the least large cardinals implying a failure of the square principle. If κ is subcompact, then the square principle fails at κ. Canonical inner models at the level of subcompact cardinals satisfy the square principle at all but subcompact cardinals. (Existence of such models has not yet been proved, but in any case the square principle can be forced for weaker cardinals.)

Quasicompactness is one of the strongest large cardinal properties that can be witnessed by current inner models that do not use long extenders. For current inner models, the elementary embeddings included are determined by their effect on P(κ) (as computed at the stage the embedding is included), where κ is the critical point. This prevents them from witnessing even a κ+ strongly compact cardinal  κ.

Subcompact and quasicompact cardinals were defined by Ronald Jensen.

Related Research Articles

In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal κ is strongly inaccessible if it is uncountable, it is not a sum of fewer than κ cardinals smaller than κ, and implies .

In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, and all singletons {α}, ακ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large.

In set theory, a strong cardinal is a type of large cardinal. It is a weakening of the notion of a supercompact cardinal.

In set theory, a Woodin cardinal is a cardinal number such that for all functions

In set theory, a supercompact cardinal is a type of large cardinal. They display a variety of reflection properties.

In mathematics, a cardinal number κ is called huge if there exists an elementary embedding j : VM from V into a transitive inner model M with critical point κ and

In set theory, a branch of mathematics, a rank-into-rank embedding is a large cardinal property defined by one of the following four axioms given in order of increasing consistency strength.

In mathematics, extendible cardinals are large cardinals introduced by Reinhardt (1974), who was partly motivated by reflection principles. Intuitively, such a cardinal represents a point beyond which initial pieces of the universe of sets start to look similar, in the sense that each is elementarily embeddable into a later one.

In mathematics, a remarkable cardinal is a certain kind of large cardinal number.

In mathematical logic, and particularly in its subfield model theory, a saturated modelM is one that realizes as many complete types as may be "reasonably expected" given its size. For example, an ultrapower model of the hyperreals is -saturated, meaning that every descending nested sequence of internal sets has a nonempty intersection.

In mathematics, an unfoldable cardinal is a certain kind of large cardinal number.

In set theory, a branch of mathematics, a strongly compact cardinal is a certain kind of large cardinal.

In set theory, the core model is a definable inner model of the universe of all sets. Even though set theorists refer to "the core model", it is not a uniquely identified mathematical object. Rather, it is a class of inner models that under the right set-theoretic assumptions have very special properties, most notably covering properties. Intuitively, the core model is "the largest canonical inner model there is" and is typically associated with a large cardinal notion. If Φ is a large cardinal notion, then the phrase "core model below Φ" refers to the definable inner model that exhibits the special properties under the assumption that there does not exist a cardinal satisfying Φ. The core model program seeks to analyze large cardinal axioms by determining the core models below them.

In mathematics, Vopěnka's principle is a large cardinal axiom. The intuition behind the axiom is that the set-theoretical universe is so large that in every proper class, some members are similar to others, with this similarity formalized through elementary embeddings.

In set theory, the singular cardinals hypothesis (SCH) arose from the question of whether the least cardinal number for which the generalized continuum hypothesis (GCH) might fail could be a singular cardinal.

In set theory, a branch of mathematics, a Reinhardt cardinal is a kind of large cardinal. Reinhardt cardinals are considered under ZF, because they are inconsistent with ZFC. They were suggested by American mathematician William Nelson Reinhardt (1939–1998).

In the mathematical field of set theory, the proper forcing axiom (PFA) is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings.

This is a glossary of set theory.

In set theory, Berkeley cardinals are certain large cardinals suggested by Hugh Woodin in a seminar at the University of California, Berkeley in about 1992.

References