This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(September 2023) |
In set theory, a strongly compact cardinal is a certain kind of large cardinal.
An uncountable cardinal κ is strongly compact if and only if every κ-complete filter can be extended to a κ-complete ultrafilter.
Strongly compact cardinals were originally defined in terms of infinitary logic, where logical operators are allowed to take infinitely many operands. The logic on a regular cardinal κ is defined by requiring the number of operands for each operator to be less than κ; then κ is strongly compact if its logic satisfies an analog of the compactness property of finitary logic. Specifically, a statement which follows from some other collection of statements should also follow from some subcollection having cardinality less than κ.
The property of strong compactness may be weakened by only requiring this compactness property to hold when the original collection of statements has cardinality below a certain cardinal λ; we may then refer to λ-compactness. A cardinal κ is weakly compact if and only if it is κ-compact; this was the original definition of that concept.
Strong compactness implies measurability, and is implied by supercompactness. Given that the relevant cardinals exist, it is consistent with ZFC either that the first measurable cardinal is strongly compact, or that the first strongly compact cardinal is supercompact; these cannot both be true, however. A measurable limit of strongly compact cardinals is strongly compact, but the least such limit is not supercompact.
The consistency strength of strong compactness is strictly above that of a Woodin cardinal. Some set theorists conjecture that existence of a strongly compact cardinal is equiconsistent with that of a supercompact cardinal. However, a proof is unlikely until a canonical inner model theory for supercompact cardinals is developed.
Jech obtained a variant of the tree property which holds for an inaccessible cardinal if and only if it is strongly compact. [1]
Extendibility is a second-order analog of strong compactness.
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, ∅ and all singletons {α} are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large.
In set theory, a strong cardinal is a type of large cardinal. It is a weakening of the notion of a supercompact cardinal.
In set theory, a Woodin cardinal is a cardinal number such that for all functions , there exists a cardinal with and an elementary embedding from the Von Neumann universe into a transitive inner model with critical point and .
In set theory, a supercompact cardinal is a type of large cardinal independently introduced by Solovay and Reinhardt. They display a variety of reflection properties.
In mathematics, a cardinal number is called huge if there exists an elementary embedding from into a transitive inner model with critical point and
In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by Erdős & Tarski (1961); weakly compact cardinals are large cardinals, meaning that their existence cannot be proven from the standard axioms of set theory.
In mathematics, extendible cardinals are large cardinals introduced by Reinhardt (1974), who was partly motivated by reflection principles. Intuitively, such a cardinal represents a point beyond which initial pieces of the universe of sets start to look similar, in the sense that each is elementarily embeddable into a later one.
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large". The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more".
In mathematical logic, and particularly in its subfield model theory, a saturated modelM is one that realizes as many complete types as may be "reasonably expected" given its size. For example, an ultrapower model of the hyperreals is -saturated, meaning that every descending nested sequence of internal sets has a nonempty intersection.
In mathematics, an unfoldable cardinal is a certain kind of large cardinal number.
Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness".
Robert Martin Solovay is an American mathematician working in set theory.
In set theory, the core model is a definable inner model of the universe of all sets. Even though set theorists refer to "the core model", it is not a uniquely identified mathematical object. Rather, it is a class of inner models that under the right set-theoretic assumptions have very special properties, most notably covering properties. Intuitively, the core model is "the largest canonical inner model there is", p. 28 and is typically associated with a large cardinal notion. If Φ is a large cardinal notion, then the phrase "core model below Φ" refers to the definable inner model that exhibits the special properties under the assumption that there does not exist a cardinal satisfying Φ. The core model program seeks to analyze large cardinal axioms by determining the core models below them.
In mathematics, a subcompact cardinal is a certain kind of large cardinal number.
In set theory, the singular cardinals hypothesis (SCH) arose from the question of whether the least cardinal number for which the generalized continuum hypothesis (GCH) might fail could be a singular cardinal.
In the mathematical field of set theory, the proper forcing axiom (PFA) is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings.
In set theory, an Aronszajn tree is a tree of uncountable height with no uncountable branches and no uncountable levels. For example, every Suslin tree is an Aronszajn tree. More generally, for a cardinal κ, a κ-Aronszajn tree is a tree of height κ in which all levels have size less than κ and all branches have height less than κ. They are named for Nachman Aronszajn, who constructed an Aronszajn tree in 1934; his construction was described by Kurepa (1935).
This is a glossary of terms and definitions related to the topic of set theory.