In mathematical set theory, a square principle is a combinatorial principle asserting the existence of a cohering sequence of short closed unbounded (club) sets so that no one (long) club set coheres with them all. As such they may be viewed as a kind of incompactness phenomenon. [1] They were introduced by Ronald Jensen in his analysis of the fine structure of the constructible universe L.
Define Sing to be the class of all limit ordinals which are not regular. Global square states that there is a system satisfying:
Jensen introduced also a local version of the principle. [2] If is an uncountable cardinal, then asserts that there is a sequence satisfying:
Jensen proved that this principle holds in the constructible universe for any uncountable cardinal κ.
This set theory-related article is a stub. You can help Wikipedia by expanding it. |
In mathematics, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states:
There is no set whose cardinality is strictly between that of the integers and the real numbers.
In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal is strongly inaccessible if it is uncountable, it is not a sum of fewer than cardinals that are less than , and implies .
In mathematics, a Mahlo cardinal is a certain kind of large cardinal number. Mahlo cardinals were first described by Paul Mahlo. As with all large cardinals, none of these varieties of Mahlo cardinals can be proved to exist by ZFC.
In mathematics, in set theory, the constructible universe, denoted L, is a particular class of sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchy Lα . It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.
In mathematics, the beth numbers are a certain sequence of infinite cardinal numbers, conventionally written , where is the second Hebrew letter (beth). The beth numbers are related to the aleph numbers, but there may be numbers indexed by that are not indexed by .
An infinitary logic is a logic that allows infinitely long statements and/or infinitely long proofs. Some infinitary logics may have different properties from those of standard first-order logic. In particular, infinitary logics may fail to be compact or complete. Notions of compactness and completeness that are equivalent in finitary logic sometimes are not so in infinitary logics. Therefore for infinitary logics, notions of strong compactness and strong completeness are defined. This article addresses Hilbert-type infinitary logics, as these have been extensively studied and constitute the most straightforward extensions of finitary logic. These are not, however, the only infinitary logics that have been formulated or studied.
In mathematics, particularly in mathematical logic and set theory, a club set is a subset of a limit ordinal that is closed under the order topology, and is unbounded relative to the limit ordinal. The name club is a contraction of "closed and unbounded".
Newton's constant or Einstein's gravitational constant, denoted κ (kappa), is the coupling constant appearing in the Einstein field equation which can be written:
In mathematics, particularly in set theory, Fodor's lemma states the following:
In mathematics, particularly in set theory, if is a regular uncountable cardinal then , the filter of all sets containing a club subset of , is a -complete filter closed under diagonal intersection called the club filter.
In mathematics, a compact quantum group is an abstract structure on a unital separable C*-algebra axiomatized from those that exist on the commutative C*-algebra of "continuous complex-valued functions" on a compact quantum group.
In mathematics, the epsilon numbers are a collection of transfinite numbers whose defining property is that they are fixed points of an exponential map. Consequently, they are not reachable from 0 via a finite series of applications of the chosen exponential map and of "weaker" operations like addition and multiplication. The original epsilon numbers were introduced by Georg Cantor in the context of ordinal arithmetic; they are the ordinal numbers ε that satisfy the equation
In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations. However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not ; various more-concrete ways of defining ordinals that definitely have notations are available.
In directional statistics, the 5-parameter Fisher–Bingham distribution or Kent distribution, named after Ronald Fisher, Christopher Bingham, and John T. Kent, is a probability distribution on the two-dimensional unit sphere in . It is the analogue on the two-dimensional unit sphere of the bivariate normal distribution with an unconstrained covariance matrix. The Kent distribution was proposed by John T. Kent in 1982, and is used in geology as well as bioinformatics.
The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.
In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to
In set theory, a branch of mathematics, the Milner – Rado paradox, found by Eric Charles Milner and Richard Rado (1965), states that every ordinal number less than the successor of some cardinal number can be written as the union of sets X1,X2,... where Xn is of order type at most κn for n a positive integer.
In set theory, an ordinal number, or ordinal, is one generalization of the concept of a natural number that is used to describe a way to arrange a collection of objects in order, one after another. Any finite collection of objects can be put in order just by the process of counting: labeling the objects with distinct natural numbers. Ordinal numbers are thus the "labels" needed to arrange collections of objects in order.
This is a glossary of set theory.