Critical point (set theory)

Last updated

In set theory, the critical point of an elementary embedding of a transitive class into another transitive class is the smallest ordinal which is not mapped to itself. [1]

Suppose that is an elementary embedding where and are transitive classes and is definable in by a formula of set theory with parameters from . Then must take ordinals to ordinals and must be strictly increasing. Also . If for all and , then is said to be the critical point of .

If is V , then (the critical point of ) is always a measurable cardinal, i.e. an uncountable cardinal number κ such that there exists a -complete, non-principal ultrafilter over . Specifically, one may take the filter to be . Generally, there will be many other <κ-complete, non-principal ultrafilters over . However, might be different from the ultrapower(s) arising from such filter(s).

If and are the same and is the identity function on , then is called "trivial". If the transitive class is an inner model of ZFC and has no critical point, i.e. every ordinal maps to itself, then is trivial.

Related Research Articles

In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.

In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal κ is strongly inaccessible if it satisfies the following three conditions: it is uncountable, it is not a sum of fewer than κ cardinals smaller than κ, and implies .

In mathematics, a Mahlo cardinal is a certain kind of large cardinal number. Mahlo cardinals were first described by Paul Mahlo. As with all large cardinals, none of these varieties of Mahlo cardinals can be proven to exist by ZFC.

In set theory, a branch of mathematics, a Q-indescribable cardinal is a certain kind of large cardinal number that is hard to axiomatize in some language Q. There are many different types of indescribable cardinals corresponding to different choices of languages Q. They were introduced by Hanf & Scott (1961).

In set theory, a strong cardinal is a type of large cardinal. It is a weakening of the notion of a supercompact cardinal.

In set theory, a Woodin cardinal is a cardinal number such that for all functions , there exists a cardinal with and an elementary embedding from the Von Neumann universe into a transitive inner model with critical point and .

In set theory, a supercompact cardinal is a type of large cardinal independently introduced by Solovay and Reinhardt. They display a variety of reflection properties.

In mathematics, a cardinal number is called huge if there exists an elementary embedding from into a transitive inner model with critical point and

In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by Erdős & Tarski (1961); weakly compact cardinals are large cardinals, meaning that their existence cannot be proven from the standard axioms of set theory.

In set theory, a branch of mathematics, a rank-into-rank embedding is a large cardinal property defined by one of the following four axioms given in order of increasing consistency strength.

In mathematics, an Erdős cardinal, also called a partition cardinal is a certain kind of large cardinal number introduced by Paul Erdős and András Hajnal.

In mathematics, in set theory, the constructible universe, denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.

In mathematics, limit cardinals are certain cardinal numbers. A cardinal number λ is a weak limit cardinal if λ is neither a successor cardinal nor zero. This means that one cannot "reach" λ from another cardinal by repeated successor operations. These cardinals are sometimes called simply "limit cardinals" when the context is clear.

In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular.

In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers, conventionally written , where is the Hebrew letter beth. The beth numbers are related to the aleph numbers, but unless the generalized continuum hypothesis is true, there are numbers indexed by that are not indexed by .

<span class="mw-page-title-main">Tree (set theory)</span> Concept in set theory, a topic in mathematics

In set theory, a tree is a partially ordered set (T, <) such that for each tT, the set {sT : s < t} is well-ordered by the relation <. Frequently trees are assumed to have only one root (i.e. minimal element), as the typical questions investigated in this field are easily reduced to questions about single-rooted trees.

In mathematics, particularly in mathematical logic and set theory, a club set is a subset of a limit ordinal that is closed under the order topology, and is unbounded relative to the limit ordinal. The name club is a contraction of "closed and unbounded".

In set theory, a branch of mathematics, a Reinhardt cardinal is a kind of large cardinal. Reinhardt cardinals are considered under ZF, because they are inconsistent with ZFC. They were suggested by American mathematician William Nelson Reinhardt (1939–1998).

In set theory, an extender is a system of ultrafilters which represents an elementary embedding witnessing large cardinal properties. A nonprincipal ultrafilter is the most basic case of an extender.

This is a glossary of terms and definitions related to the topic of set theory.

References

  1. Jech, Thomas (2002). Set Theory. Berlin: Springer-Verlag. ISBN   3-540-44085-2. p. 323