Crossband operation

Last updated

Crossband (cross-band, cross band) operation is a method of telecommunication in which a radio station receives signals on one frequency and simultaneously transmits on another for the purpose of full duplex communication or signal relay. [1]

Contents

To avoid interference within the equipment at the station, the two frequencies used need to be separated, and ideally on different 'bands'. An unattended station working in this way is a radio repeater. It re-transmits the same information that it receives. This principle is used by telecommunications satellites and terrestrial mobile radio systems.

Uses

Crossband operation is sometimes used by amateur radio operators. [2] Rather than taking it in turns to transmit on the same frequency, both operators can transmit at the same time but on different bands, each one listening to the frequency that the other is using to transmit. A variation on this procedure includes establishing contact on one frequency and then changing to a pair of other frequencies to exchange messages.

Crossband operation is also used in communication between ships (inter-ship) with a HF installation. Frequencies that may be used can be found in the 'Manual for use by the Maritime Mobile and Maritime Mobile-Satellite Services'. Usually inter-ship communication is simplex only (VHF or MF), HF gives the possibility to work duplex but usually the transmitter and receiver are so close to each other that this may cause problems. The solution is to work on frequencies that are far apart e.g.: sending on 8 MHz and receiving on 12 MHz.

See also

Related Research Articles

<span class="mw-page-title-main">Repeater</span> Relay station

In telecommunications, a repeater is an electronic device that receives a signal and retransmits it. Repeaters are used to extend transmissions so that the signal can cover longer distances or be received on the other side of an obstruction. Some types of repeaters broadcast an identical signal, but alter its method of transmission, for example, on another frequency or baud rate.

<span class="mw-page-title-main">Very high frequency</span> Electromagnetic wave range of 30-300 MHz

Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF).

<span class="mw-page-title-main">High frequency</span> The range 3-30 MHz of the electromagnetic spectrum

High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters. Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or "skywave" propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (3.95–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

<span class="mw-page-title-main">Radiotelephone</span> Communications system for transmission of speech over radio

A radiotelephone, abbreviated RT, is a radio communication system for conducting a conversation; radiotelephony means telephony by radio. It is in contrast to radiotelegraphy, which is radio transmission of telegrams (messages), or television, transmission of moving pictures and sound. The term is related to radio broadcasting, which transmit audio one way to listeners. Radiotelephony refers specifically to two-way radio systems for bidirectional person-to-person voice communication between separated users, such as CB radio or marine radio. In spite of the name, radiotelephony systems are not necessarily connected to or have anything to do with the telephone network, and in some radio services, including GMRS, interconnection is prohibited.

<span class="mw-page-title-main">Marine VHF radio</span> Radios operating in the very high frequency maritime mobile band

Marine VHF radio is a worldwide system of two way radio transceivers on ships and watercraft used for bidirectional voice communication from ship-to-ship, ship-to-shore, and in certain circumstances ship-to-aircraft. It uses FM channels in the very high frequency (VHF) radio band in the frequency range between 156 and 174 MHz, inclusive, designated by the International Telecommunication Union as the VHF maritime mobile band. In some countries additional channels are used, such as the L and F channels for leisure and fishing vessels in the Nordic countries. Transmitter power is limited to 25 watts, giving them a range of about 100 kilometres.

The Global Maritime Distress and Safety System (GMDSS) is a worldwide system for automated emergency signal communication for ships at sea developed by the United Nations' International Maritime Organization (IMO) as part of the SOLAS Convention.

<span class="mw-page-title-main">Digital selective calling</span>

Digital selective calling or DSC is a standard for transmitting predefined digital messages via the medium-frequency (MF), high-frequency (HF) and very-high-frequency (VHF) maritime radio systems. It is a core part of the Global Maritime Distress Safety System (GMDSS).

The 2-meter amateur radio band is a portion of the VHF radio spectrum that comprises frequencies stretching from 144 MHz to 148 MHz in International Telecommunication Union region (ITU) Regions 2 and 3 and from 144 MHz to 146 MHz in ITU Region 1 . The license privileges of amateur radio operators include the use of frequencies within this band for telecommunication, usually conducted locally with a line-of-sight range of about 100 miles (160 km).

The 33-centimeter or 900 MHz band is a portion of the UHF radio spectrum internationally allocated to amateur radio on a secondary basis. It ranges from 902 to 928 MHz and is unique to ITU Region 2. It is primarily used for very local communications as opposed to bands lower in frequency. However, very high antennas with high gain have shown 33 centimeters can provide good long-range communications almost equal to systems on lower frequencies such as the 70 centimeter band. The band is also used by industrial, scientific, and medical (ISM) equipment, as well as low-powered unlicensed devices. Amateur stations must accept harmful interference caused by ISM users but may receive protection from unlicensed devices.

A duplex communication system is a point-to-point system composed of two or more connected parties or devices that can communicate with one another in both directions. Duplex systems are employed in many communications networks, either to allow for simultaneous communication in both directions between two connected parties or to provide a reverse path for the monitoring and remote adjustment of equipment in the field. There are two types of duplex communication systems: full-duplex (FDX) and half-duplex (HDX).

<span class="mw-page-title-main">Maritime mobile amateur radio</span> Amateur radio in maritime applications

Most countries' amateur radio licences allow licensed operators to install and use radio transmission equipment while at sea. Such operation is known as maritime mobile amateur radio. In most cases the operator's call sign needs to be extended by adding the suffix "/MM" when transmitting at sea.

Amateur radio frequency allocation is done by national telecommunication authorities. Globally, the International Telecommunication Union (ITU) oversees how much radio spectrum is set aside for amateur radio transmissions. Individual amateur stations are free to use any frequency within authorized frequency ranges; authorized bands may vary by the class of the station license.

A land mobile radio system (LMRS) is a person-to-person voice communication system consisting of two-way radio transceivers which can be stationary, mobile, or portable. Public land mobile radio systems are made for use exclusively by public safety organizations such as police, fire, and ambulance services, and other governmental organizations, and use special frequencies reserved for these services. Private land mobile radio systems are designed for private commercial use, by firms such as taxis or delivery services. Most systems are half-duplex, with multiple radios sharing a single radio channel, so only one radio can transmit at a time. The transceiver is normally in receiving mode so the user can hear other radios on the channel; to talk, the user presses a push to talk button that turns on the transmitter of the transceiver. Land mobile radio systems use channels in the VHF or UHF bands, since the antennas used at these short wavelengths are small enough to mount on vehicles or handheld transceivers. Transmitter power is usually limited to a few watts, to provide a reliable working range on the order of 3 to 20 miles depending on terrain. Repeaters installed on tall buildings, hills or mountain peaks can be used to increase the coverage area. Older systems use AM or FM modulation, while some recent systems use digital modulation allowing them to transmit data as well as sound.

<span class="mw-page-title-main">Amateur radio repeater</span> Combined receiver and transmitter

An amateur radio repeater is an electronic device that receives a weak or low-level amateur radio signal and retransmits it at a higher level or higher power, so that the signal can cover longer distances without degradation. Many repeaters are located on hilltops or on tall buildings as the higher location increases their coverage area, sometimes referred to as the radio horizon, or "footprint". Amateur radio repeaters are similar in concept to those used by public safety entities, businesses, government, military, and more. Amateur radio repeaters may even use commercially packaged repeater systems that have been adjusted to operate within amateur radio frequency bands, but more often amateur repeaters are assembled from receivers, transmitters, controllers, power supplies, antennas, and other components, from various sources.

<span class="mw-page-title-main">Radio repeater</span>

A radio repeater is a combination of a radio receiver and a radio transmitter that receives a signal and retransmits it, so that two-way radio signals can cover longer distances. A repeater sited at a high elevation can allow two mobile stations, otherwise out of line-of-sight propagation range of each other, to communicate. Repeaters are found in professional, commercial, and government mobile radio systems and also in amateur radio.

<span class="mw-page-title-main">2182 kHz</span> Radio distress frequency

The radio frequency 2182 kHz is one of the international calling and distress frequencies for maritime radiocommunication in a frequency band allocated to the mobile service on first priority ("primary") basis, exclusively for distress and calling operations.

<span class="mw-page-title-main">Amateur Radio Emergency Communications</span>

Amateur Radio Emergency Communications (AREC), formerly the Amateur Radio Emergency Corps, is a service provided by the New Zealand Association of Radio Transmitters (NZART) which provides trained radio communicators and communication systems for emergency situations.

An international distress frequency is a radio frequency that is designated for emergency communication by international agreement.

Self-interference cancellation (SIC) is a signal processing technique that enables a radio transceiver to simultaneously transmit and receive on a single channel, a pair of partially-overlapping channels, or any pair of channels in the same frequency band. When used to allow simultaneous transmission and reception on the same frequency, sometimes referred to as “in-band full-duplex” or “simultaneous transmit and receive,” SIC effectively doubles spectral efficiency. SIC also enables devices and platforms containing two radios that use the same frequency band to operate both radios simultaneously.

An emergency locator beacon is a radio beacon, a portable battery powered radio transmitter, used to locate airplanes, vessels, and persons in distress and in need of immediate rescue. Various types of emergency locator beacons are carried by aircraft, ships, vehicles, hikers and cross-country skiers. In case of an emergency, such as the aircraft crashing, the ship sinking, or a hiker becoming lost, the transmitter is deployed and begins to transmit a continuous radio signal, which is used by search and rescue teams to quickly find the emergency and render aid. The purpose of all emergency locator beacons is to help rescuers find survivors within the so-called "golden day", the first 24 hours following a traumatic event, during which the majority of survivors can usually be saved.

References

  1. Cross Band Repeating, K. Larson (KJ6RZ) "Crossband Repeating". Archived from the original on 2013-01-22. Retrieved 2019-09-12.
  2. Crossband Repeater Operation, C. LaBarge (WB3GCK) http://www.qsl.net/wb3gck/cbr.htm

Further reading

Additional articles on crossband repeat usage and setup: