Crowd analysis

Last updated

Crowd analysis is the practice of interpreting data on the natural movement of groups or objects. Masses of bodies, particularly humans, are the subjects of these crowd tracking analyses that include how a particular crowd moves and when a movement pattern changes. [1] Researchers use the data to predict future crowd movement, crowd density, and plan responses to potential events such as those that require evacuation routes. [2] Applications of crowd analysis can range from video game crowd simulation to security and surveillance.

Contents

Background

Due to population growth, crowd analysis has become a major interest in social and technical disciplines. [3] People use crowd analysis to develop crowd management strategies in public events as well as public space design, visual surveillance, and virtual environments. Goals include to make areas more convenient, and prevent crowd induced disasters. [3]

Some crowds cannot be analyzed as easily as others. The psychology of a crowd impacts how it is broken up and studied. Crowds can be casual, such as a group of pedestrian walking down the road, or causal, like people participating in a marathon or protest. They can be as active and erratic as a mob, or as passive as an audience. While the main crowd is the subject of the bulk of the analysis, anomalies must be taken into account, like someone opposing the flow of traffic or a biker travelling through a group of walkers. Hence, the purpose of a group of individuals determines the interpretation of the data obtained. Significant research has been done to understand the way crowds move in order to predict where areas of conflicts may occur. [4] This research is done by analyzing data from crowds, and then proceeding to create models of similar situations using software. Many models that simulate crowd behavior exist, with some stating "macroscopic models like network-based models or fluid-dynamics models as well as microscopic models like e.g. the Social Force Model or Cellular Automata." [4]

Methodology

Crowd density refers to the number of objects within a unit area, such as people per square meter. [5] Density is important to determine the maximum occupancy of a room or building to address safety concerns. Analyzing areas that become more densely packed than others is essential for designing buildings and evacuation routes. Addressing such concerns involves the management and optimization of the crowd and allows one to predict movement patterns.

Crowd flow involves the speed that objects in a crowd move in a space. At a critical capacity, flow begins to decrease as crowd density increases. The Yerkes-Dodson law explains how performance is impacted by the amount of stress on an individual. The stress is caused by external factors such as an object coming at the individual, a time constraint for the individual to perform a task, or the number of agents crowding an individual. [6]

In regard to computer animation, simulated individuals (referred to as agents) are often written to portray realistic crowd-like behavior. They follow an algorithm based on stress, navigation fields, and surrounding agents in order to manipulate behavior. The study of producing intelligent agents to follow lifelike behavior falls under the field of artificial intelligence.

Applications

The data drawn from crowd analysis is invaluable in a range of fields and real world implementations.

Crowd Artificial Intelligence

Otherwise referred to as swarm intelligence , the analysis and application of crowd movement can contribute to the modeling of group behavior based on biological and artificial models. [7] Social instinct behavior is applied to complex systems that model multiple agents and their interactions. Population-based methods are used to represent local interactions of agents with their surroundings. [8]

Sociology

There are countless social applications of crowd analysis, ranging from uses within the film and video game industries, to uses in public planning. Being that crowd simulations are based on group dynamics and crowd psychology, the accuracy and relevance to real life situations is clear. A large aspect of public planning and its use of crowd analysis lies within the realm of situational representations for emergency evacuation. Evacuations can be planned via the modeling and study of crowd interaction and reaction. These representations are based on biological models and patterns, thus the movements predicted are quite realistic. Similar models are utilized within motion picture industries to produce realistic and lifelike simulations and scenes.

Simulations

A system can generate a realistic crowd simulation with given inputs and simulate how the simulated moving objects, or agents, will interact with each other and with the environment. The goal is to replicate a crowd's movement patterns given numerous agents in a given space. Algorithms based on crowd analysis attempt to manage the movement of the crowd. The more efficient and realistic a simulation becomes, the more complex the algorithm must become. The software must be able to manipulate the trajectory of individual agents based on variables such as the agents' goals, stress forces, obstacles, and levels of arousal.

See also

Related Research Articles

<span class="mw-page-title-main">Flocking</span> Swarming behaviour of birds when flying or foraging

Flocking is the behavior exhibited when a group of birds, called a flock, are foraging or in flight. Sheep and goats also exhibit flocking behavior.

Computational archaeology describes computer-based analytical methods for the study of long-term human behaviour and behavioural evolution. As with other sub-disciplines that have prefixed 'computational' to their name, the term is reserved for methods that could not realistically be performed without the aid of a computer.

<span class="mw-page-title-main">Swarm behaviour</span> Collective behaviour of a large number of (usually) self-propelled entities of similar size

Swarm behaviour, or swarming, is a collective behaviour exhibited by entities, particularly animals, of similar size which aggregate together, perhaps milling about the same spot or perhaps moving en masse or migrating in some direction. It is a highly interdisciplinary topic.

<span class="mw-page-title-main">Computer simulation</span> Process of mathematical modelling, performed on a computer

Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics, astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions.

Social simulation is a research field that applies computational methods to study issues in the social sciences. The issues explored include problems in computational law, psychology, organizational behavior, sociology, political science, economics, anthropology, geography, engineering, archaeology and linguistics.

<span class="mw-page-title-main">Boids</span> Artificial life program

Boids is an artificial life program, developed by Craig Reynolds in 1986, which simulates the flocking behaviour of birds, and related group motion. His paper on this topic was published in 1987 in the proceedings of the ACM SIGGRAPH conference. The name "boid" corresponds to a shortened version of "bird-oid object", which refers to a bird-like object. Reynolds' boid model is one example of a larger general concept, for which many other variations have been developed since. The closely related work of Ichiro Aoki is noteworthy because it was published in 1982 — five years before Reynolds' boids paper.

<span class="mw-page-title-main">Ant colony optimization algorithms</span> Optimization algorithm

In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. Artificial ants stand for multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of artificial ants and local search algorithms have become a method of choice for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and internet routing.

<span class="mw-page-title-main">Swarm intelligence</span> Collective behavior of decentralized, self-organized systems

Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems.

<span class="mw-page-title-main">Crowd simulation</span> Model of movement

Crowd simulation is the process of simulating the movement of a large number of entities or characters. It is commonly used to create virtual scenes for visual media like films and video games, and is also used in crisis training, architecture and urban planning, and evacuation simulation.

<span class="mw-page-title-main">Crowd</span> Group who have gathered for a common purpose or intent

A crowd is as a group of people that have gathered for a common purpose or intent. Examples are a demonstration, a sports event, or a looting. A crowd may also simply be made up of many people going about their business in a busy area.

<span class="mw-page-title-main">Multi-agent system</span> Built of multiple interacting agents

A multi-agent system is a computerized system composed of multiple interacting intelligent agents. Multi-agent systems can solve problems that are difficult or impossible for an individual agent or a monolithic system to solve. Intelligence may include methodic, functional, procedural approaches, algorithmic search or reinforcement learning.

<span class="mw-page-title-main">Computational sociology</span> Branch of the discipline of sociology

Computational sociology is a branch of sociology that uses computationally intensive methods to analyze and model social phenomena. Using computer simulations, artificial intelligence, complex statistical methods, and analytic approaches like social network analysis, computational sociology develops and tests theories of complex social processes through bottom-up modeling of social interactions.

An agent-based model (ABM) is a computational model for simulating the actions and interactions of autonomous agents in order to understand the behavior of a system and what governs its outcomes. It combines elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. Monte Carlo methods are used to understand the stochasticity of these models. Particularly within ecology, ABMs are also called individual-based models (IBMs). A review of recent literature on individual-based models, agent-based models, and multiagent systems shows that ABMs are used in many scientific domains including biology, ecology and social science. Agent-based modeling is related to, but distinct from, the concept of multi-agent systems or multi-agent simulation in that the goal of ABM is to search for explanatory insight into the collective behavior of agents obeying simple rules, typically in natural systems, rather than in designing agents or solving specific practical or engineering problems.

Swarm is the name of an open-source agent-based modeling simulation package, useful for simulating the interaction of agents and their emergent collective behaviour. Swarm was initially developed at the Santa Fe Institute in the mid-1990s, and since 1999 has been maintained by the non-profit Swarm Development Group. Also known as the Swarm Simulation System, it is available for free and use, covered by the GNU General Public License.

Evacuation simulation is a method to determine evacuation times for areas, buildings, or vessels. It is based on the simulation of crowd dynamics and pedestrian motion. The number of evacuation software have been increased dramatically in the last 25 years. A similar trend has been observed in term of the number of scientific papers published on this subject. One of the latest survey indicate the existence of over 70 pedestrian evacuation models. Today there are two conferences dedicated to this subject: "Pedestrian Evacuation Dynamics" and "Human Behavior in Fire".

<span class="mw-page-title-main">Spatial analysis</span> Formal techniques which study entities using their topological, geometric, or geographic properties

Spatial analysis is any of the formal techniques which studies entities using their topological, geometric, or geographic properties. Spatial analysis includes a variety of techniques using different analytic approaches, especially spatial statistics. It may be applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, or to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures. In a more restricted sense, spatial analysis is geospatial analysis, the technique applied to structures at the human scale, most notably in the analysis of geographic data. It may also be applied to genomics, as in transcriptomics data.

Cultural algorithms (CA) are a branch of evolutionary computation where there is a knowledge component that is called the belief space in addition to the population component. In this sense, cultural algorithms can be seen as an extension to a conventional genetic algorithm. Cultural algorithms were introduced by Reynolds (see references).

Agent-based social simulation consists of social simulations that are based on agent-based modeling, and implemented using artificial agent technologies. Agent-based social simulation is a scientific discipline concerned with simulation of social phenomena, using computer-based multiagent models. In these simulations, persons or group of persons are represented by agents. MABSS is a combination of social science, multiagent simulation and computer simulation.

Historical dynamics broadly includes the scientific modeling of history. This might also be termed computer modeling of history, historical simulation, or simulation of history - allowing for an extensive range of techniques in simulation and estimation. Historical dynamics does not exist as a separate science, but there are individual efforts such as long range planning, population modeling, economic forecasting, demographics, global modeling, country modeling, regional planning, urban planning and many others in the general categories of computer modeling, planning, forecasting, and simulations.

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

References

  1. Gamma, "Data-driven Crowd Simulation and Crowd Tracking", UNC at Chapel Hill, 2015
  2. Jacques, Julio, "Crowd Analysis Using Computer Vision Techniques", "IEEE Signal Processing Magazine", September 2010
  3. 1 2 Zhan, Beibei; Monekosso, Dorothy N.; Remagnino, Paolo; Velastin, Sergio A.; Xu, Li-Qun (2008). "Crowd analysis: A survey". Machine Vision and Applications. 19 (5–6): 345. doi:10.1007/s00138-008-0132-4. S2CID   1417739.
  4. 1 2 M. Butenuth et al., "Integrating pedestrian simulation, tracking and event detection for crowd analysis," 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, 2011, pp. 150-157. Web.
  5. Still, G. Keith, "Crowd Safety and Risk Analysis", G. Keith Still, August 2016
  6. S. Kim, S. Guy, D. Manocha, M. Lin, "Interactive Simulation of Dynamic Crowd Behaviors using General Adaptation Syndrome Theory", Gamma research group, February 2015
  7. Bonabeau, Eric; Dorigo, Marco; Theraulaz, Guy (1999-01-01). From Natural to Artificial Swarm Intelligence. Oxford University Press. ISBN   978-0-19-513158-1.
  8. Hinchey, M. G.; Sterritt, R.; Rouff, C. (2007-04-01). "Swarms and Swarm Intelligence" (PDF). Computer. 40 (4): 111–113. doi:10.1109/MC.2007.144. ISSN   0018-9162. S2CID   2836636.