Cryptographic splitting

Last updated

Cryptographic splitting, also known as cryptographic bit splitting or cryptographic data splitting, is a technique for securing data over a computer network. The technique involves encrypting data, splitting the encrypted data into smaller data units, distributing those smaller units to different storage locations, and then further encrypting the data at its new location. [1] With this process, the data is protected from security breaches, because even if an intruder is able to retrieve and decrypt one data unit, the information would be useless unless it can be combined with decrypted data units from the other locations.

Contents

History

The technology was filed for patent consideration in June 2003, and the patent was granted in June 2008. [1]

Technology

Cryptographic splitting utilizes a combination of different algorithms to provide the data protection. A block of data is first encrypted using the AES-256 government encryption standard. The encrypted bits are then split into different shares and then each share is hashed using the National Security Agency's SHA-256 algorithm. [2]

Applications

One application of cryptographic splitting is to provide security for cloud computing. The encrypted data subsets can be stored on different clouds, with the information required to restore the data being held on a private cloud for additional security. [3] Security vendor Security First Corp uses this technology for its Secure Parser Extended (SPx) product line.[ citation needed ]

In 2009, technology services company Unisys gave a presentation about using cryptographic splitting with storage area networks. By splitting the data into different parts of the storage area network, this technique provided data redundancy in addition to security. [2]

Computer giant IBM has written about using the technology as part of its Cloud Data Encryption Services (ICDES). [4]

The technology has also been written about in the context of more effectively using sensitive corporate information, by entrusting different individuals within a company (trustees) with different parts of the information. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Cipher</span> Algorithm for encrypting and decrypting information

In cryptography, a cipher is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common term is encipherment. To encipher or encode is to convert information into cipher or code. In common parlance, "cipher" is synonymous with "code", as they are both a set of steps that encrypt a message; however, the concepts are distinct in cryptography, especially classical cryptography.

<span class="mw-page-title-main">Encryption</span> Process of converting plaintext to ciphertext

In cryptography, encryption is the process of encoding information. This process converts the original representation of the information, known as plaintext, into an alternative form known as ciphertext. Ideally, only authorized parties can decipher a ciphertext back to plaintext and access the original information. Encryption does not itself prevent interference but denies the intelligible content to a would-be interceptor.

Pretty Good Privacy (PGP) is an encryption program that provides cryptographic privacy and authentication for data communication. PGP is used for signing, encrypting, and decrypting texts, e-mails, files, directories, and whole disk partitions and to increase the security of e-mail communications. Phil Zimmermann developed PGP in 1991.

A key in cryptography is a piece of information, usually a string of numbers or letters that are stored in a file, which, when processed through a cryptographic algorithm, can encode or decode cryptographic data. Based on the used method, the key can be different sizes and varieties, but in all cases, the strength of the encryption relies on the security of the key being maintained. A key's security strength is dependent on its algorithm, the size of the key, the generation of the key, and the process of key exchange.

Key management refers to management of cryptographic keys in a cryptosystem. This includes dealing with the generation, exchange, storage, use, crypto-shredding (destruction) and replacement of keys. It includes cryptographic protocol design, key servers, user procedures, and other relevant protocols.

Proxy re-encryption (PRE) schemes are cryptosystems which allow third parties (proxies) to alter a ciphertext which has been encrypted for one party, so that it may be decrypted by another.

Encryption software is software that uses cryptography to prevent unauthorized access to digital information. Cryptography is used to protect digital information on computers as well as the digital information that is sent to other computers over the Internet.

Disk encryption is a special case of data at rest protection when the storage medium is a sector-addressable device. This article presents cryptographic aspects of the problem. For an overview, see disk encryption. For discussion of different software packages and hardware devices devoted to this problem, see disk encryption software and disk encryption hardware.

Institute of Electrical and Electronics Engineers (IEEE) standardization project for encryption of stored data, but more generically refers to the Security in Storage Working Group (SISWG), which includes a family of standards for protection of stored data and for the corresponding cryptographic key management.

Cloud storage is a model of computer data storage in which data, said to be on "the cloud", is stored remotely in logical pools and is accessible to users over a network, typically the Internet. The physical storage spans multiple servers, and the physical environment is typically owned and managed by a cloud computing provider. These cloud storage providers are responsible for keeping the data available and accessible, and the physical environment secured, protected, and running. People and organizations buy or lease storage capacity from the providers to store user, organization, or application data.

Private biometrics is a form of encrypted biometrics, also called privacy-preserving biometric authentication methods, in which the biometric payload is a one-way, homomorphically encrypted feature vector that is 0.05% the size of the original biometric template and can be searched with full accuracy, speed and privacy. The feature vector's homomorphic encryption allows search and match to be conducted in polynomial time on an encrypted dataset and the search result is returned as an encrypted match. One or more computing devices may use an encrypted feature vector to verify an individual person or identify an individual in a datastore without storing, sending or receiving plaintext biometric data within or between computing devices or any other entity. The purpose of private biometrics is to allow a person to be identified or authenticated while guaranteeing individual privacy and fundamental human rights by only operating on biometric data in the encrypted space. Some private biometrics including fingerprint authentication methods, face authentication methods, and identity-matching algorithms according to bodily features. Private biometrics are constantly evolving based on the changing nature of privacy needs, identity theft, and biotechnology.

Hardware-based full disk encryption (FDE) is available from many hard disk drive (HDD/SSD) vendors, including: Hitachi, Integral Memory, iStorage Limited, Micron, Seagate Technology, Samsung, Toshiba, Viasat UK, Western Digital. The symmetric encryption key is maintained independently from the computer's CPU, thus allowing the complete data store to be encrypted and removing computer memory as a potential attack vector.

<span class="mw-page-title-main">Cryptography</span> Practice and study of secure communication techniques

Cryptography, or cryptology, is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications.

Cloud computing security or, more simply, cloud security, refers to a broad set of policies, technologies, applications, and controls utilized to protect virtualized IP, data, applications, services, and the associated infrastructure of cloud computing. It is a sub-domain of computer security, network security, and, more broadly, information security.

Database encryption can generally be defined as a process that uses an algorithm to transform data stored in a database into "cipher text" that is incomprehensible without first being decrypted. It can therefore be said that the purpose of database encryption is to protect the data stored in a database from being accessed by individuals with potentially "malicious" intentions. The act of encrypting a database also reduces the incentive for individuals to hack the aforementioned database as "meaningless" encrypted data adds extra steps for hackers to retrieve the data. There are multiple techniques and technologies available for database encryption, the most important of which will be detailed in this article.

Convergent encryption, also known as content hash keying, is a cryptosystem that produces identical ciphertext from identical plaintext files. This has applications in cloud computing to remove duplicate files from storage without the provider having access to the encryption keys. The combination of deduplication and convergent encryption was described in a backup system patent filed by Stac Electronics in 1995. This combination has been used by Farsite, Permabit, Freenet, MojoNation, GNUnet, flud, and the Tahoe Least-Authority File Store.

Datain use is an information technology term referring to active data which is stored in a non-persistent digital state typically in computer random-access memory (RAM), CPU caches, or CPU registers.

Identity-based conditional proxy re-encryption (IBCPRE) is a type of proxy re-encryption (PRE) scheme in the identity-based public key cryptographic setting. An IBCPRE scheme is a natural extension of proxy re-encryption on two aspects. The first aspect is to extend the proxy re-encryption notion to the identity-based public key cryptographic setting. The second aspect is to extend the feature set of proxy re-encryption to support conditional proxy re-encryption. By conditional proxy re-encryption, a proxy can use an IBCPRE scheme to re-encrypt a ciphertext but the ciphertext would only be well-formed for decryption if a condition applied onto the ciphertext together with the re-encryption key is satisfied. This allows fine-grained proxy re-encryption and can be useful for applications such as secure sharing over encrypted cloud data storage.

Crypto-shredding is the practice of 'deleting' data by deliberately deleting or overwriting the encryption keys. This requires that the data have been encrypted. Data may be considered to exist in three states: data at rest, data in transit and data in use. General data security principles, such as in the CIA triad of confidentiality, integrity, and availability, require that all three states must be adequately protected.

Confidential computing is a security and privacy-enhancing computational technique focused on protecting data in use. Confidential computing can be used in conjunction with storage and network encryption, which protect data at rest and data in transit respectively. It is designed to address software, protocol, cryptographic, and basic physical and supply-chain attacks, although some critics have demonstrated architectural and side-channel attacks effective against the technology.

References

  1. 1 2 "United States Patent 7391865: Secure data parser method and system". freepatentsonline.com. 2008-06-24. Retrieved 2016-09-23.
  2. 1 2 Dodgson, David. "Storage Security Using Cryptographic Splitting" (PDF). snia.org. Retrieved 2016-09-23.
  3. Balasaraswathi v.r; Manikandan s (2015-01-26). "Enhanced security for multi-cloud storage using cryptographic data splitting with dynamic approach". 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies. ieee.org. pp. 1190–1194. doi:10.1109/ICACCCT.2014.7019286. ISBN   978-1-4799-3914-5. S2CID   16542768.
  4. "Cloud computing news: Security". ibm.com. 2015-10-21. Retrieved 2016-09-23.
  5. Ogiela, Lidia (April 2015). "Advanced techniques for knowledge management and access to strategic information". International Journal of Information Management. 35 (2): 154–159. doi:10.1016/j.ijinfomgt.2014.11.006. S2CID   17463367.