This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(May 2012) |
In mathematics, Cutler's bar notation is a notation system for large numbers, introduced by Mark Cutler in 2004. The idea is based on iterated exponentiation in much the same way that exponentiation is iterated multiplication.
A regular exponential can be expressed as such:
However, these expressions become arbitrarily large when dealing with systems such as Knuth's up-arrow notation. Take the following:
Cutler's bar notation shifts these exponentials counterclockwise, forming . A bar is placed above the variable to denote this change. As such:
This system becomes effective with multiple exponents, when regular denotation becomes too cumbersome.
At any time, this can be further shortened by rotating the exponential counterclockwise once more.
The same pattern could be iterated a fourth time, becoming . For this reason, it is sometimes referred to as Cutler's circular notation.
The Cutler bar notation can be used to easily express other notation systems in exponent form. It also allows for a flexible summarization of multiple copies of the same exponents, where any number of stacked exponents can be shifted counterclockwise and shortened to a single variable. The bar notation also allows for fairly rapid composure of very large numbers. For instance, the number would contain more than a googolplex digits, while remaining fairly simple to write with and remember.
However, the system reaches a problem when dealing with different exponents in a single expression. For instance, the expression could not be summarized in bar notation. Additionally, the exponent can only be shifted thrice before it returns to its original position, making a five degree shift indistinguishable from a one degree shift. Some[ who? ] have suggested using a double and triple bar in subsequent rotations, though this presents problems when dealing with ten- and twenty-degree shifts.
Other equivalent notations for the same operations already exist without being limited to a fixed number of recursions, notably Knuth's up-arrow notation and hyperoperation notation.
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.
The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".
Elementary algebra, also known as college algebra, encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables.
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation. These can be of quite general use, for example in modular arithmetic or powering of matrices. For semigroups for which additive notation is commonly used, like elliptic curves used in cryptography, this method is also referred to as double-and-add.
Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a product.
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:
Graham's number is a large number that arose as an upper bound on the answer of a problem in the mathematical field of Ramsey theory. It is much larger than many other large numbers such as Skewes's number and Moser's number, both of which are in turn much larger than a googolplex. As with these, it is so large that the observable universe is far too small to contain an ordinary digital representation of Graham's number, assuming that each digit occupies one Planck volume, possibly the smallest measurable space. But even the number of digits in this digital representation of Graham's number would itself be a number so large that its digital representation cannot be represented in the observable universe. Nor even can the number of digits of that number—and so forth, for a number of times far exceeding the total number of Planck volumes in the observable universe. Thus Graham's number cannot be expressed even by physical universe-scale power towers of the form .
In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976.
Mathematical notation consists of using symbols for representing operations, unspecified numbers, relations, and any other mathematical objects and assembling them into expressions and formulas. Mathematical notation is widely used in mathematics, science, and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way.
In mathematics, the Baker–Campbell–Hausdorff formula gives the value of that solves the equation
Conway chained arrow notation, created by mathematician John Horton Conway, is a means of expressing certain extremely large numbers. It is simply a finite sequence of positive integers separated by rightward arrows, e.g. .
In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though and the left-exponent xb are common.
In mathematics, the circle group, denoted by or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers
In mathematics, an expression is in closed form if it is formed with constants, variables and a finite set of basic functions connected by arithmetic operations and function composition. Commonly, the allowed functions are nth root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context.
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.
Modular exponentiation is exponentiation performed over a modulus. It is useful in computer science, especially in the field of public-key cryptography, where it is used in both Diffie–Hellman key exchange and RSA public/private keys.
In mathematics, an iterated function is a function that is obtained by composing another function with itself two or several times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again into the function as input, and this process is repeated.
In mathematics, pentation is the next hyperoperation after tetration and before hexation. It is defined as iterated (repeated) tetration, just as tetration is iterated right-associative exponentiation. It is a binary operation defined with two numbers a and b, where a is tetrated to itself b − 1 times. For instance, using hyperoperation notation for pentation and tetration, means tetrating 2 to itself 2 times, or . This can then be reduced to
In mathematics, the hyperoperation sequence is an infinite sequence of arithmetic operations (called hyperoperations in this context) that starts with a unary operation (the successor function with n = 0). The sequence continues with the binary operations of addition (n = 1), multiplication (n = 2), and exponentiation (n = 3).
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a special symbol, or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and π occurring in such diverse contexts as geometry, number theory, statistics, and calculus.