A cyclic executive [1] [2] is an alternative to a real-time operating system. It is a form of cooperative multitasking, in which there is only one task. The sole task is typically realized as an infinite loop in main(), e.g. in C.
The basic scheme is to cycle through a repeating sequence of activities, at a set frequency (AKA time-triggered cyclic executive). For example, consider the example of an embedded system designed to monitor a temperature sensor and update an LCD display. The LCD may need to be written twenty times a second (i.e., every 50 ms). If the temperature sensor must be read every 100 ms for other reasons, we might construct a loop of the following appearance:
intmain(void){while(1){// This loop is designed to take 100 ms, meaning// all steps add up to 100 ms.// Since this is demo code and we don't know how long// tempRead or lcdWrite take to execute, we assume// they take zero time.// As a result, the delays are responsible for the task scheduling / timing.// Read temp once per cycle (every 100 ms)currTemp=tempRead();// Write to LCD twice per cycle (every 50 ms)lcdWrite(currTemp);delay(50);lcdWrite(currTemp);delay(50);// Now 100 ms (delay(50) + delay(50) + tempRead + lcdWrite + lcdWrite)// has passed so we repeat the cycle.}}
The outer 100 ms cycle is called the major cycle. In this case, there is also an inner minor cycle of 50 ms. In this first example the outer versus inner cycles aren't obvious. We can use a counting mechanism to clarify the major and minor cycles.
intmain(void){unsignedinti=0;while(1){// This loop is designed to take 50 ms.// Since this is demo code and we don't know how long// tempRead or lcdWrite take to execute, we assume// they take zero time.// Since we only want tempRead to execute every 100ms, we use// an if statement to check whether a counter is odd or even, // and decide whether to execute tempRead.// Read temp every other cycle (every 100 ms)if((i%2)==0){currTemp=tempRead();}// Write to LCD once per cycle (every 50 ms)lcdWrite(currTemp);delay(50);i++;// Now 50 ms has passed so we repeat the cycle.}}
I2C (Inter-Integrated Circuit; pronounced as “eye-squared-see” or “eye-two-see”), alternatively known as I2C or IIC, is a synchronous, multi-controller/multi-target (historically termed as multi-master/multi-slave), single-ended, serial communication bus invented in 1982 by Philips Semiconductors. It is widely used for attaching lower-speed peripheral integrated circuits (ICs) to processors and microcontrollers in short-distance, intra-board communication.
The MSP430 is a mixed-signal microcontroller family from Texas Instruments, first introduced on 14 February 1992. Built around a 16-bit CPU, the MSP430 was designed for low power consumption, embedded applications and low cost.
RTLinux is a hard realtime real-time operating system (RTOS) microkernel that runs the entire Linux operating system as a fully preemptive process. The hard real-time property makes it possible to control robots, data acquisition systems, manufacturing plants, and other time-sensitive instruments and machines from RTLinux applications. The design was patented. Despite the similar name, it is not related to the Real-Time Linux project of the Linux Foundation.
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop. All generators are also iterators. A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values. However, instead of building an array containing all the values and returning them all at once, a generator yields the values one at a time, which requires less memory and allows the caller to get started processing the first few values immediately. In short, a generator looks like a function but behaves like an iterator.
In computer science and software engineering, busy-waiting, busy-looping or spinning is a technique in which a process repeatedly checks to see if a condition is true, such as whether keyboard input or a lock is available. Spinning can also be used to generate an arbitrary time delay, a technique that was necessary on systems that lacked a method of waiting a specific length of time. Processor speeds vary greatly from computer to computer, especially as some processors are designed to dynamically adjust speed based on current workload. Consequently, spinning as a time-delay technique can produce inconsistent or even unpredictable results on different systems unless code is included to determine the time a processor takes to execute a "do nothing" loop, or the looping code explicitly checks a real-time clock.
Cilk, Cilk++, Cilk Plus and OpenCilk are general-purpose programming languages designed for multithreaded parallel computing. They are based on the C and C++ programming languages, which they extend with constructs to express parallel loops and the fork–join idiom.
Lamport's bakery algorithm is a computer algorithm devised by computer scientist Leslie Lamport, as part of his long study of the formal correctness of concurrent systems, which is intended to improve the safety in the usage of shared resources among multiple threads by means of mutual exclusion.
Automatic parallelization, also auto parallelization, or autoparallelization refers to converting sequential code into multi-threaded and/or vectorized code in order to use multiple processors simultaneously in a shared-memory multiprocessor (SMP) machine. Fully automatic parallelization of sequential programs is a challenge because it requires complex program analysis and the best approach may depend upon parameter values that are not known at compilation time.
In computer programming, the term hooking covers a range of techniques used to alter or augment the behaviour of an operating system, of applications, or of other software components by intercepting function calls or messages or events passed between software components. Code that handles such intercepted function calls, events or messages is called a hook.
Profinet is an industry technical standard for data communication over Industrial Ethernet, designed for collecting data from, and controlling equipment in industrial systems, with a particular strength in delivering data under tight time constraints. The standard is maintained and supported by Profibus and Profinet International, an umbrella organization headquartered in Karlsruhe, Germany.
Automata-based programming is a programming paradigm in which the program or part of it is thought of as a model of a finite-state machine (FSM) or any other formal automaton. Sometimes a potentially infinite set of possible states is introduced, and such a set can have a complicated structure, not just an enumeration.
Handel-C is a high-level hardware description language aimed at low-level hardware and is most commonly used in programming FPGAs. Handel-C is to hardware design what the first high-level programming languages were to programming CPUs. It is a turing-complete rich subset of the C programming language, with an emphasis on parallel computing.
Charlieplexing is a technique for accessing a large number of LEDs, switches, micro-capacitors or other I/O entities, using relatively few tri-state logic wires from a microcontroller. These I/O entities can be wired as discrete components, x/y arrays, or woven in a diagonally intersecting pattern to form diagonal arrays.
Rabbit Semiconductor is an American company which designs and sells the Rabbit family of microcontrollers and microcontroller modules. For development, it provides Dynamic C, a non-standard dialect of C with proprietary structures for multitasking.
In computing, the producer-consumer problem is a family of problems described by Edsger W. Dijkstra since 1965.
Loop-level parallelism is a form of parallelism in software programming that is concerned with extracting parallel tasks from loops. The opportunity for loop-level parallelism often arises in computing programs where data is stored in random access data structures. Where a sequential program will iterate over the data structure and operate on indices one at a time, a program exploiting loop-level parallelism will use multiple threads or processes which operate on some or all of the indices at the same time. Such parallelism provides a speedup to overall execution time of the program, typically in line with Amdahl's law.
In computing, an emulator is hardware or software that enables one computer system to behave like another computer system. An emulator typically enables the host system to run software or use peripheral devices designed for the guest system. Emulation refers to the ability of a computer program in an electronic device to emulate another program or device.
Microsoft Small Basic is a programming language, interpreter and associated IDE. Microsoft's simplified variant of BASIC, it is designed to help students who have learnt visual programming languages such as Scratch learn text-based programming. The associated IDE provides a simplified programming environment with functionality such as syntax highlighting, intelligent code completion, and in-editor documentation access. The language has only 14 keywords.
Cycle sort is an in-place, unstable sorting algorithm, a comparison sort that is theoretically optimal in terms of the total number of writes to the original array, unlike any other in-place sorting algorithm. It is based on the idea that the permutation to be sorted can be factored into cycles, which can individually be rotated to give a sorted result.
In software engineering, the module pattern is a design pattern used to implement the concept of software modules, defined by modular programming, in a programming language with incomplete direct support for the concept.