D-Lightsys

Last updated
D-Lightsys
Industry
Founded2002
FounderMathias Pez and François Quentel
Headquarters,
Owner Radiall
Website www.d-lightsys.com

D-Lightsys, a Radiall Company, designs and manufactures high performance optical interconnect products for severe environment applications. D-Lightsys products are based on optoelectronic components. The company headquarters are located in Aubervilliers, near Paris, France. Products are manufactured in Isle d’Abeau, near Lyon, and are sold through the Radiall sales network under the D-Lightsys brand.

Contents

History

In 2002, D-Lightsys won the French award for the most innovative high-tech start-up.[ citation needed ] It was founded that year by Mathias Pez and François Quentel, two fiber optic interconnection specialists who previously worked for the Thales Group Advanced Research Center.

On April 15, 2005, Radiall announced its acquisition of a 40% stake in D-Lightsys. On January 8, 2008, Radiall announced an increase in its shareholdings of the start-up D-Lightsys to 95 percent.

Research

Many products use vertical-cavity surface-emitting laser (VCSEL) technology.

D-Lightsys considers free space optical links for intermediate communication distances ranging from a few centimeters to one or two meters. In a 2006 paper, they presented the initial simulations and the first experimental characterizations of a VCSEL-based point-to-point free space interconnect on distances ranging from 16 cm to 40 cm targeting bit rates up to 10 Gbit/s. [1]

High-throughput optical interconnect technology

Alcatel Space and the CNES have investigated [2] optical interconnects as an enabling technology that may offer the high-throughput data communication capabilities required to the future on-board processors and digital equipment. D-Lightsys cooperated on this research with the development of the optoelectronic modules.

Spatiotemporal and thermal analysis of VCSEL

High-speed optoelectronic modules using VCSEL coupled to multi-mode optical fibers are used for 10 Gigabit Ethernet in short-distance optical links. A complete model of the spatiotemporal behavior of multimode VCSELs, through static and dynamic response, noise, thermal effects, and its coupling to MMF has been investigated. The two founders of D-Lightsys took part in this study. [3]

Relative intensity noise shows modal dependence and can be affected by spatial filtering due to coupling and fiber propagation. Simulations permit to evaluate critical parameters, such as modulation formats, launching conditions, and operating temperature for global bandwidth and eye diagram optimization up to 10 Gbit/s. Simulation results are compared to measurements on prototype optoelectronic modules.

VHDL-AMS model

In a 2004 study, [4] in which Matthias Pez of D-Lightsys contributed, is presented a methodology based on VHDL-AMS modeling for taking into account the thermal effects of an optical emission module combined with electronic and optic behavior. The thermal transfer is due to the self-heating on one side and the interaction between the components of the other side. This methodology is implemented and simulated with ADVanceMS.

Related Research Articles

<span class="mw-page-title-main">Single-mode optical fiber</span> Optical fiber designed to carry only a single mode of light, the transverse mode

In fiber-optic communication, a single-mode optical fiber (SMF), also known as fundamental- or mono-mode, is an optical fiber designed to carry only a single mode of light - the transverse mode. Modes are the possible solutions of the Helmholtz equation for waves, which is obtained by combining Maxwell's equations and the boundary conditions. These modes define the way the wave travels through space, i.e. how the wave is distributed in space. Waves can have the same mode but have different frequencies. This is the case in single-mode fibers, where we can have waves with different frequencies, but of the same mode, which means that they are distributed in space in the same way, and that gives us a single ray of light. Although the ray travels parallel to the length of the fiber, it is often called transverse mode since its electromagnetic oscillations occur perpendicular (transverse) to the length of the fiber. The 2009 Nobel Prize in Physics was awarded to Charles K. Kao for his theoretical work on the single-mode optical fiber. The standards G.652 and G.657 define the most widely used forms of single-mode optical fiber.

<span class="mw-page-title-main">Wavelength-division multiplexing</span> Fiber-optic communications technology

In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths of laser light. This technique enables bidirectional communications over a single strand of fiber, also called wavelength-division duplexing, as well as multiplication of capacity.

<span class="mw-page-title-main">InfiniBand</span> Network standard

InfiniBand (IB) is a computer networking communications standard used in high-performance computing that features very high throughput and very low latency. It is used for data interconnect both among and within computers. InfiniBand is also used as either a direct or switched interconnect between servers and storage systems, as well as an interconnect between storage systems. It is designed to be scalable and uses a switched fabric network topology. By 2014, it was the most commonly used interconnect in the TOP500 list of supercomputers, until about 2016.

<span class="mw-page-title-main">Vertical-cavity surface-emitting laser</span> Type of semiconductor laser diode

The vertical-cavity surface-emitting laser, or VCSEL, is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers which emit from surfaces formed by cleaving the individual chip out of a wafer. VCSELs are used in various laser products, including computer mice, fiber optic communications, laser printers, Face ID, and smartglasses.

<span class="mw-page-title-main">Small Form-factor Pluggable</span> Modular communications interface

Small Form-factor Pluggable (SFP) is a compact, hot-pluggable network interface module format used for both telecommunication and data communications applications. An SFP interface on networking hardware is a modular slot for a media-specific transceiver, such as for a fiber-optic cable or a copper cable. The advantage of using SFPs compared to fixed interfaces is that individual ports can be equipped with different types of transceivers as required.

<span class="mw-page-title-main">Passive optical network</span> Technology used to provide broadband to the end consumer via fiber

A passive optical network (PON) is a fiber-optic telecommunications technology for delivering broadband network access to end-customers. Its architecture implements a point-to-multipoint topology in which a single optical fiber serves multiple endpoints by using unpowered (passive) fiber optic splitters to divide the fiber bandwidth among the endpoints. Passive optical networks are often referred to as the last mile between an Internet service provider (ISP) and its customers. Many fiber ISPs prefer this technology.

<span class="mw-page-title-main">Multi-mode optical fiber</span> Type of optical fiber mostly used for communication over short distances

Multi-mode optical fiber is a type of optical fiber mostly used for communication over short distances, such as within a building or on a campus. Multi-mode links can be used for data rates up to 100 Gbit/s. Multi-mode fiber has a fairly large core diameter that enables multiple light modes to be propagated and limits the maximum length of a transmission link because of modal dispersion. The standard G.651.1 defines the most widely used forms of multi-mode optical fiber.

A parallel optical interface is a form of fiber optic technology aimed primarily at communications and networking over relatively short distances, and at high bandwidths.

An optical link is a telecommunications link that consists of a single end-to-end optical circuit. A cable of optical fibers, possibly concatenated into a dark fiber link, is the simplest form of an optical link.

<span class="mw-page-title-main">Fiber-optic communication</span> Method of transmitting information

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

40 Gigabit Ethernet (40GbE) and 100 Gigabit Ethernet (100GbE) are groups of computer networking technologies for transmitting Ethernet frames at rates of 40 and 100 gigabits per second (Gbit/s), respectively. These technologies offer significantly higher speeds than 10 Gigabit Ethernet. The technology was first defined by the IEEE 802.3ba-2010 standard and later by the 802.3bg-2011, 802.3bj-2014, 802.3bm-2015, and 802.3cd-2018 standards. The first succeeding Terabit Ethernet specifications were approved in 2017.

<span class="mw-page-title-main">Aeluros</span>

Aeluros Inc was a semiconductor company developing integrated circuits for wireline communications - for Ethernet operating at 10 Gigabits per second. The company was founded in 2001, and produced physical layer ICs used in 10GE line cards and optical modules.

<span class="mw-page-title-main">IPtronics</span>

IPtronics was a fabless semiconductor company headquartered in Copenhagen, Denmark. Its products include integrated circuits for parallel optical interconnect applications intended for the computer, storage and communication industries. IPtronics' design center is certified by STMicroelectronics, which is also their semiconductor foundry partner. In June 2013, IPtronics was acquired by Mellanox Technologies.

<span class="mw-page-title-main">Active cable</span>

Active cables are copper cables used for data transmission that use an electronic circuit to boost the performance of the cable. Without an electronic circuit, a cable is considered a passive cable. Passive cables are prone to data degradation from channel impairments, including attenuation, crosstalk, and group velocity distortion. In active cables, a circuit using one or several integrated circuits is embedded in the cable to compensate for some or all of these impairments. This active boosting allows cables to be more compact, thinner, longer, and to transmit data faster than passive cables.

<span class="mw-page-title-main">10 Gigabit Ethernet</span> Standards for Ethernet at ten times the speed of Gigabit Ethernet

10 Gigabit Ethernet is a group of computer networking technologies for transmitting Ethernet frames at a rate of 10 gigabits per second. It was first defined by the IEEE 802.3ae-2002 standard. Unlike previous Ethernet standards, 10GbE defines only full-duplex point-to-point links which are generally connected by network switches; shared-medium CSMA/CD operation has not been carried over from the previous generations of Ethernet standards so half-duplex operation and repeater hubs do not exist in 10GbE. The first standard for faster 100 Gigabit Ethernet links was approved in 2010.

Terabit Ethernet or TbE is Ethernet with speeds above 100 Gigabit Ethernet. 400 Gigabit Ethernet and 200 Gigabit Ethernet standards developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet were approved on December 6, 2017. In 2016, several networking equipment suppliers were already offering proprietary solutions for 200G and 400G.

The XFP is a standard for transceivers for high-speed computer network and telecommunication links that use optical fiber. It was defined by an industry group in 2002, along with its interface to other electrical components, which is called XFI.

<span class="mw-page-title-main">James R. Biard</span> American electrical engineer and inventor (1931–2022)

James Robert Biard was an American electrical engineer and inventor who held 73 U.S. patents. Some of his more significant patents include the first infrared light-emitting diode (LED), the optical isolator, Schottky clamped logic circuits, silicon Metal Oxide Semiconductor Read Only Memory, a low bulk leakage current avalanche photodetector, and fiber-optic data links. In 1980, Biard became a member of the staff of Texas A&M University as an Adjunct Professor of Electrical Engineering. In 1991, he was elected as a member into the National Academy of Engineering for contributions to semiconductor light-emitting diodes and lasers, Schotky-clamped logic, and read-only memories.

<span class="mw-page-title-main">Fibre to the office</span>

Fiber to the office (FTTO) is an alternative cabling concept for local area network (LAN) network office environments. It combines passive elements and active mini-switches to provide end devices with Gigabit Ethernet. FTTO involves centralised optical fibre cabling techniques to create a combined backbone/horizontal channel; this channel is provided from the work areas to the centralised cross-connect or interconnect by allowing the use of pull-through cables or splices in the telecommunications room.

An optical module is a typically hot-pluggable optical transceiver used in high-bandwidth data communications applications. Optical modules typically have an electrical interface on the side that connects to the inside of the system and an optical interface on the side that connects to the outside world through a fiber optic cable. The form factor and electrical interface are often specified by an interested group using a multi-source agreement (MSA). Optical modules can either plug into a front panel socket or an on-board socket. Sometimes the optical module is replaced by an electrical interface module that implements either an active or passive electrical connection to the outside world. A large industry supports the manufacturing and use of optical modules.

References

  1. V. Foucal; F. Quentel; M. Pez; C. Claudepierre; G. Barbary; C. Hartmann; P. Twardowski; P. Meyrueis (April 21, 2006). "Point to point VCSEL-based free space optical data link for board-to-board communications". Micro-Optics, VCSELs, and Photonic Interconnects II: Fabrication, Packaging, and Integration. SPIE. doi:10.1117/12.663072.
  2. High-throughput optical interconnect technology for future on-board digital processors
  3. Spatiotemporal and Thermal Analysis of VCSEL for Short-range Gigabit Optical Links
  4. "VHDL-AMS Model of a VCSEL Emission Module with Thermal Effects" (PDF). Archived from the original (PDF) on 2008-05-17. Retrieved 2009-08-21.