DEAF1

Last updated

The DEAF1 transcription factor (HGNC:14677) (or "deformed epidermal autoregulatory factor 1 in Drosophila) is coded by DEAF1 at 11p15.5. It is a member of the Zinc finger protein and MYND-type protein.

Pathology

Related Research Articles

<span class="mw-page-title-main">FOXP2</span> Transcription factor gene of the forkhead box family

Forkhead box protein P2 (FOXP2) is a protein that, in humans, is encoded by the FOXP2 gene. FOXP2 is a member of the forkhead box family of transcription factors, proteins that regulate gene expression by binding to DNA. It is expressed in the brain, heart, lungs and digestive system.

<span class="mw-page-title-main">ARHGEF6</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 6 is a protein that, in humans, is encoded by the ARHGEF6 gene.

<span class="mw-page-title-main">Cochlin</span> Protein highly abundant in the cochlea and vestibule of the inner ear

Cochlin is a protein that in humans is encoded by the COCH gene. It is an extracellular matrix (ECM) protein highly abundant in the cochlea and vestibule of the inner ear, constituting the major non-collagen component of the ECM of the inner ear. The protein is highly conserved in human, mouse, and chicken, showing 94% and 79% amino acid identity of human to mouse and chicken sequences, respectively.

<span class="mw-page-title-main">SYNGAP1</span> Protein in Homo sapiens

Synaptic Ras GTPase-activating protein 1, also known as synaptic Ras-GAP 1 or SYNGAP1, is a protein that in humans is encoded by the SYNGAP1 gene. SYNGAP1 is a ras GTPase-activating protein that is critical for the development of cognition and proper synapse function. Mutations in humans can cause intellectual disability, epilepsy, autism and sensory processing deficits.

<span class="mw-page-title-main">TECTA</span>

Alpha-tectorin is a protein that in humans is encoded by the TECTA gene.

<span class="mw-page-title-main">OPHN1</span> Protein-coding gene in the species Homo sapiens

Oligophrenin-1 is a protein that in humans is encoded by the OPHN1 gene.

<span class="mw-page-title-main">CHD2</span>

Chromodomain-helicase-DNA-binding protein 2 is an enzyme that in humans is encoded by the CHD2 gene.

<span class="mw-page-title-main">Intellectual disability</span> Generalized neurodevelopmental disorder

Intellectual disability (ID), also known as general learning disability in the United Kingdom and formerly mental retardation, is a generalized neurodevelopmental disorder characterized by significantly impaired intellectual and adaptive functioning. It is defined by an IQ under 70, in addition to deficits in two or more adaptive behaviors that affect everyday, general living. Intellectual functions are defined under DSM-V as reasoning, problem‑solving, planning, abstract thinking, judgment, academic learning, and learning from instruction and experience, and practical understanding confirmed by both clinical assessment and standardized tests. Adaptive behavior is defined in terms of conceptual, social, and practical skills involving tasks performed by people in their everyday lives.

X-linked intellectual disability refers to medical disorders associated with X-linked recessive inheritance that result in intellectual disability.

FG syndrome (FGS) is a rare genetic syndrome caused by one or more recessive genes located on the X chromosome and causing physical anomalies and developmental delays. FG syndrome was named after the first letters of the surnames of the first patients noted with the disease. First reported by American geneticists John M. Opitz and Elisabeth G. Kaveggia in 1974, its major clinical features include intellectual disability, hyperactivity, hypotonia, and a characteristic facial appearance including macrocephaly.

<span class="mw-page-title-main">Lujan–Fryns syndrome</span> Medical condition

Lujan–Fryns syndrome (LFS) is an X-linked genetic disorder that causes mild to moderate intellectual disability and features described as Marfanoid habitus, referring to a group of physical characteristics similar to those found in Marfan syndrome. These features include a tall, thin stature and long, slender limbs. LFS is also associated with psychopathology and behavioral abnormalities, and it exhibits a number of malformations affecting the brain and heart. The disorder is inherited in an X-linked dominant manner, and is attributed to a missense mutation in the MED12 gene. There is currently no treatment or therapy for the underlying MED12 malfunction, and the exact cause of the disorder remains unclear.

<span class="mw-page-title-main">SETBP1</span>

SET binding protein 1 is a protein that in humans is encoded by the SETBP1 gene.

<span class="mw-page-title-main">MECP2 duplication syndrome</span> Medical condition

MECP2 duplication syndrome (M2DS) is a rare disease that is characterized by severe intellectual disability and impaired motor function. It is an X-linked genetic disorder caused by the overexpression of MeCP2 protein.

<span class="mw-page-title-main">Wieacker syndrome</span> Medical condition

First being described and identified in 1985, Wieacker-Wolff syndrome is a rare, slowly progressive, genetic disorder present at birth and characterized by deformities of the joints of the feet, muscle degeneration, mild intellectual disability and an impaired ability to move certain muscles of the eyes, face and tongue. Wieacker syndrome is inherited as an X-linked recessive trait.

<span class="mw-page-title-main">Xp11.2 duplication</span>

Xp11.2 duplication is a genomic variation marked by the duplication of an X chromosome region on the short arm p at position 11.2, defined by standard karyotyping (G-banding). This gene-rich, rearrangement prone region can be further divided into three loci - Xp11.21, Xp11.22 and Xp11.23. The duplication could involve any combination of these three loci. While the length of the duplication can vary from 0.5Mb to 55 Mb, most duplications measure about 4.5Mb and typically occur in the region of 11.22-11.23. Most affected females show preferential activation of the duplicated X chromosome. Features of affected individuals vary significantly, even among members of the same family. The Xp11.2 duplication can be 'silent' - presenting no obvious symptoms in carriers - which is known from the asymptomatic parents of affected children carrying the duplication. The common symptoms include intellectual disabilities, speech delay and learning difficulties, while in rare cases, children have seizures and a recognizable brain wave pattern when assessed by EEG (electroencephalography).

<span class="mw-page-title-main">Methyl-cpg binding domain protein 5</span>

Methyl-CpG binding domain protein 5 is a protein that in humans is encoded by the MBD5 gene.

Cytochrome c oxidase assembly factor COX20 is a protein that in humans is encoded by the COX20 gene. This gene encodes a protein that plays a role in the assembly of cytochrome c oxidase, an important component of the respiratory pathway. Mutations in this gene can cause mitochondrial complex IV deficiency. There are multiple pseudogenes for this gene. Alternative splicing results in multiple transcript variants.

ZC4H2 is a protein-coding gene located on the X-chromosome. This gene encodes a protein which is a member of the so-called zinc finger domain-containing protein family. There is currently very limited understanding about the ZC4H2 gene and its protein function.

<span class="mw-page-title-main">CDK13-related disorder</span> Rare genetic disorder involving heart, facial and neurological features

CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD), is a very rare autosomal dominant genetic condition characterised by congenital heart defects, intellectual disability and characteristic facial features. Those affected typically have motor and language delays, low muscle tone and gastrointestinal dysmotility. Facial features include a wide nasal bridge, widely-spaced eyes, prominent, low-set ears, a flat nose tip and a small mouth. Less common features include congenital spinal abnormalities, hearing loss or seizures.

<span class="mw-page-title-main">Severe intellectual disability-progressive spastic diplegia syndrome</span> Medical condition

Severe intellectual disability-progressive spastic diplegia syndrome is a rare novel genetic disorder characterized by severe intellectual disabilities, ataxia, craniofacial dysmorphisms, and muscle spasticity. It is a type of autosomal dominant syndromic intellectual disability.

References

  1. Vulto-Van Silfhout, A. T.; Rajamanickam, S.; Jensik, P. J.; Vergult, S.; De Rocker, N.; Newhall, K. J.; Raghavan, R.; Reardon, S. N.; Jarrett, K.; McIntyre, T.; Bulinski, J.; Ownby, S. L.; Huggenvik, J. I.; McKnight, G. S.; Rose, G. M.; Cai, X.; Willaert, A.; Zweier, C.; Endele, S.; De Ligt, J.; Van Bon, B. W. M.; Lugtenberg, D.; De Vries, P. F.; Veltman, J. A.; Van Bokhoven, H.; Brunner, H. G.; Rauch, A.; De Brouwer, A. P. M.; Carvill, G. L.; et al. (2014). "Mutations Affecting the SAND Domain of DEAF1 Cause Intellectual Disability with Severe Speech Impairment and Behavioral Problems". The American Journal of Human Genetics. 94 (5): 649–661. doi:10.1016/j.ajhg.2014.03.013. PMC   4067565 . PMID   24726472.