DOD-STD-2167

Last updated

The terms "DOD-STD-2167" and "DOD-STD-2168" (often mistakenly referred to as "MIL-STD-2167" and "MIL-STD-2168" respectively) are the official specification numbers for superseded U.S. DoD military standards describing documents and procedures required for developing military computer systems. Specifically: [1]

Contents

On December 5, 1994, the standards DOD-STD-2167A and DOD-STD-2168 were superseded by MIL-STD-498, which merged DOD-STD-2167A, DOD-STD-7935A, and DOD-STD-2168 into a single document while also incorporating changes to address vendor criticisms.

See also

Notes

Related Research Articles

The Capability Maturity Model (CMM) is a development model created in 1986 after a study of data collected from organizations that contracted with the U.S. Department of Defense, who funded the research. The term "maturity" relates to the degree of formality and optimization of processes, from ad hoc practices, to formally defined steps, to managed result metrics, to active optimization of the processes.

Software Engineering Institute

The Software Engineering Institute (SEI) is an American research and development center headquartered in Pittsburgh, Pennsylvania. Its activities cover cybersecurity, software assurance, software engineering and acquisition, and component capabilities critical to the United States Department of Defense.

Work breakdown structure A deliverable-orientated breakdown of a project into smaller components.

A work-breakdown structure (WBS) in project management and systems engineering is a deliverable-oriented breakdown of a project into smaller components. A work breakdown structure is a key project deliverable that organizes the team's work into manageable sections. The Project Management Body of Knowledge defines the work-breakdown structure as a "hierarchical decomposition of the total scope of work to be carried out by the project team to accomplish the project objectives and create the required deliverables."

Configuration management Process for maintaining consistency of a product attributes with its design

Configuration management (CM) is a systems engineering process for establishing and maintaining consistency of a product's performance, functional, and physical attributes with its requirements, design, and operational information throughout its life. The CM process is widely used by military engineering organizations to manage changes throughout the system lifecycle of complex systems, such as weapon systems, military vehicles, and information systems. Outside the military, the CM process is also used with IT service management as defined by ITIL, and with other domain models in the civil engineering and other industrial engineering segments such as roads, bridges, canals, dams, and buildings.

Iterative and incremental development Development methodology

Iterative and incremental development is any combination of both iterative design or iterative method and incremental build model for development.

MIL-STD-1750A or 1750A is the formal definition of a 16-bit computer instruction set architecture (ISA), including both required and optional components, as described by the military standard document MIL-STD-1750A (1980). Since August 1996, it has been inactive for new designs.

ISO/IEC/IEEE 12207Systems and software engineering – Software life cycle processes is an international standard for software lifecycle processes. First introduced in 1995, it aims to be a primary standard that defines all the processes required for developing and maintaining software systems, including the outcomes and/or activities of each process.

In software project management, software testing, and software engineering, verification and validation (V&V) is the process of checking that a software system meets specifications and requirements so that it fulfills its intended purpose. It may also be referred to as software quality control. It is normally the responsibility of software testers as part of the software development lifecycle. In simple terms, software verification is: "Assuming we should build X, does our software achieve its goals without any bugs or gaps?" On the other hand, software validation is: "Was X what we should have built? Does X meet the high-level requirements?"

ISO/IEC 15504Information technology – Process assessment, also termed Software Process Improvement and Capability Determination (SPICE), is a set of technical standards documents for the computer software development process and related business management functions. It is one of the joint International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) standards, which was developed by the ISO and IEC joint subcommittee, ISO/IEC JTC 1/SC 7.

Capability Maturity Model Integration (CMMI) is a process level improvement training and appraisal program. Administered by the CMMI Institute, a subsidiary of ISACA, it was developed at Carnegie Mellon University (CMU). It is required by many U.S. Government contracts, especially in software development. CMU claims CMMI can be used to guide process improvement across a project, division, or an entire organization. CMMI defines the following maturity levels for processes: Initial, Managed, Defined, Quantitatively Managed, and Optimizing. Version 2.0 was published in 2018. CMMI is registered in the U.S. Patent and Trademark Office by CMU.

Software quality assurance (SQA) is a means and practice of monitoring all software engineering processes, methods, and work products to ensure compliance against defined standards. It may include ensuring conformance to standards or models, such as ISO/IEC 9126, SPICE or CMMI.

MIL-STD-498, Military Standard Software Development and Documentation, was a United States military standard whose purpose was to "establish uniform requirements for software development and documentation." It was released Nov. 8, 1994, and replaced DOD-STD-2167A, DOD-STD-7935A, and DOD-STD-1703. It was meant as an interim standard, to be in effect for about two years until a commercial standard was developed.

A United States defense standard, often called a military standard, "MIL-STD", "MIL-SPEC", or (informally) "MilSpecs", is used to help achieve standardization objectives by the U.S. Department of Defense.

Software assurance (SwA) is defined as "the level of confidence that software is free from vulnerabilities, either intentionally designed into the software or accidentally inserted at any time during its lifecycle, and that the software functions in the intended manner."

The ISO/IEC 15288 is a technical standard in systems engineering which covers processes and lifecycle stages, developed by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). Planning for the ISO/IEC 15288:2002(E) standard started in 1994 when the need for a common systems engineering process framework was recognized. The previously accepted standard MIL STD 499A (1974) was cancelled after a memo from the United States Secretary of Defense (SECDEF) prohibited the use of most U.S. Military Standards without a waiver. The first edition was issued on 1 November 2002. Stuart Arnold was the editor and Harold Lawson was the architect of the standard. In 2004 this standard was adopted by the Institute of Electrical and Electronics Engineers as IEEE 15288. ISO/IEC 15288 has been updated 1 February 2008 as well as on 15 May 2015.

DOD-STD-2167A, titled "Defense Systems Software Development", was a United States defense standard, published on February 29, 1988, which updated the less well known DOD-STD-2167 published 4 June 1985. This document established "uniform requirements for the software development that are applicable throughout the system life cycle." This revision was written to allow the contractor more flexibility and was a significant reorganization and reduction of the previous revision; e.g.., where the previous revision prescribed pages of design and coding standards, this revision only gave one page of general requirements for the contractor's coding standards; while DOD-STD-2167 listed 11 quality factors to be addressed for each software component in the SRS, DOD-STD-2167A only tasked the contractor to address relevant quality factors in the SRS. Like DOD-STD-2167, it was designed to be used with DOD-STD-2168, "Defense System Software Quality Program".

U.S. Military connector specifications

Electrical or fiber-optic connectors used by U.S. Department of Defense were originally developed in the 1930s for severe aeronautical and tactical service applications, and the Type "AN" (Army-Navy) series set the standard for modern military circular connectors. These connectors, and their evolutionary derivatives, are often called Military Standard, "MIL-STD", or (informally) "MIL-SPEC" or sometimes "MS" connectors. They are now used in aerospace, industrial, marine, and even automotive commercial applications.

MIL-STD-129 standard is used for maintaining uniformity while marking military equipment and supplies that are transported through ships. This standard has been approved to be used by the United States Department of Defense and all other government agencies. Items must be marked for easy identification before they are transported. The marking helps the military personnel to fill the necessary requisition, when a particular stock goes short of the balance level.

Trusted Computer System Evaluation Criteria

Trusted Computer System Evaluation Criteria (TCSEC) is a United States Government Department of Defense (DoD) standard that sets basic requirements for assessing the effectiveness of computer security controls built into a computer system. The TCSEC was used to evaluate, classify, and select computer systems being considered for the processing, storage, and retrieval of sensitive or classified information.

Bill Curtis is a software engineer best known for leading the development of the Capability Maturity Model and the People CMM in the Software Engineering Institute at Carnegie Mellon University, and for championing the spread of software process improvement and software measurement globally. In 2007 he was elected a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) for his contributions to software process improvement and measurement.

References