Daisy chaining DNA

Last updated

Daisy chaining DNA is a form of gene editing, or "gene drive", which, unlike CRISPR, is self-limiting. This means that any alteration made in the laboratory to a gene sequence is limited to a local population only, and cannot be passed on to global populations. It occurs when DNA undergoing PCR amplification forms tangles that resemble a 'daisy chain.' In essence it teaches DNA to count, so that the new strain will only reproduce for a fixed number of generations. It may be useful for instance to alter a particular strain of wheat to suit a local area with no danger of the new strain escaping into wild populations. As a new technique, it must be studied under carefully controlled conditions until it is better understood. Research is typically performed in closed systems on organisms such as yeast, fruit flies, mosquitos, and rapidly evolving nematode worms.

Contents

Process

Daisy chaining is when DNA undergoing PCR amplification forms tangles that resemble a 'daisy chain.' During PCR, primers or dNTP's will eventually be used up and limit further reactions. The depletion of primers causes daisy chaining; since the denaturing and annealing processes will still continue without primers, the single-stranded DNA molecules will reanneal to themselves. However, this reannealing does not always occur with another complementary strand. It is this imperfect match up that causes 'tangles'. [1] This gene drive is a self-exhausting form of CRISPR. [2] Meaning that it is a local gene drive system. The Daisy chain has a fixed number of generations so although guide molecules were used to replace DNA sequences with edited versions the daisy chain will halt evolution after a certain number of generations. [3]

Drive Sequences

This limited generation evolution is achieved by the drive mechanically using elements that affect each other. An example is a three element daisy chain; element C would be used to activate element B, element B would be used to activate element A. Element C would be the original guide molecule put into the DNA sequence by using molecular scissors with the molecule attached. These scissors cut the DNA sequence and inputs the new guide molecule. This action would halt element C from having any further development, therefore the amount of element C will never increase. As time goes on, DNA uses all of element C, and element C is progressively lost. Element C disappears which is what makes the daisy chain temporary and confined to a population. Since element C is the base, when it is in the presence of element B, element B will steadily increase. When B is in the presence of element A, element A will steadily increase. Element A increases at the fastest rate. Although each of these elements affect each other all of them are genetic boosters which drive the evolution within the population. If all elements were not working there would be no evolution in the species. [3]

Research

Because daisy drives are a relatively new topic, it is not approved for use in society. It is emphasized that until the full effects of daisy chain genome editing are understood, research needs to take place in closed systems in research facilities so the change doesn't affect wild organisms.

Research is performed on closed systems on organisms such as yeast, fruit flies, mosquitos, and rapidly evolving nematode worms. [3]

Related Research Articles

<span class="mw-page-title-main">Genetics</span> Science of genes, heredity, and variation in living organisms

Genetics is the study of genes, genetic variation, and heredity in organisms. It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar working in the 19th century in Brno, was the first to study genetics scientifically. Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to offspring over time. He observed that organisms inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.

Molecular biology is a branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions.

<span class="mw-page-title-main">Polymerase chain reaction</span> Laboratory technique to multiply a DNA sample for study

The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA sufficiently to enable detailed study. PCR was invented in 1983 by American biochemist Kary Mullis at Cetus Corporation. Mullis and biochemist Michael Smith, who had developed other essential ways of manipulating DNA, were jointly awarded the Nobel Prize in Chemistry in 1993.

In genetics and biochemistry, sequencing means to determine the primary structure of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succinctly summarizes much of the atomic-level structure of the sequenced molecule.

A microsatellite is a tract of repetitive DNA in which certain DNA motifs are repeated, typically 5–50 times. Microsatellites occur at thousands of locations within an organism's genome. They have a higher mutation rate than other areas of DNA leading to high genetic diversity. Microsatellites are often referred to as short tandem repeats (STRs) by forensic geneticists and in genetic genealogy, or as simple sequence repeats (SSRs) by plant geneticists.

<span class="mw-page-title-main">Molecular genetics</span> Scientific study of genes at the molecular level

Molecular genetics is a branch of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using genetic screens. 

Site-directed mutagenesis is a molecular biology method that is used to make specific and intentional mutating changes to the DNA sequence of a gene and any gene products. Also called site-specific mutagenesis or oligonucleotide-directed mutagenesis, it is used for investigating the structure and biological activity of DNA, RNA, and protein molecules, and for protein engineering.

<span class="mw-page-title-main">CRISPR</span> Family of DNA sequence found in prokaryotic organisms

CRISPR is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. These sequences are derived from DNA fragments of bacteriophages that had previously infected the prokaryote. They are used to detect and destroy DNA from similar bacteriophages during subsequent infections. Hence these sequences play a key role in the antiviral defense system of prokaryotes and provide a form of acquired immunity. CRISPR is found in approximately 50% of sequenced bacterial genomes and nearly 90% of sequenced archaea.

P elements are transposable elements that were discovered in Drosophila as the causative agents of genetic traits called hybrid dysgenesis. The transposon is responsible for the P trait of the P element and it is found only in wild flies. They are also found in many other eukaryotes.

<span class="mw-page-title-main">Real-time polymerase chain reaction</span> Laboratory technique of molecular biology

A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule during the PCR, not at its end, as in conventional PCR. Real-time PCR can be used quantitatively and semi-quantitatively.

<span class="mw-page-title-main">DNA shuffling</span>

DNA shuffling, also known as molecular breeding, is an in vitro random recombination method to generate mutant genes for directed evolution and to enable a rapid increase in DNA library size. Three procedures for accomplishing DNA shuffling are molecular breeding which relies on homologous recombination or the similarity of the DNA sequences, restriction enzymes which rely on common restriction sites, and nonhomologous random recombination which requires the use of hairpins. In all of these techniques, the parent genes are fragmented and then recombined.

<span class="mw-page-title-main">Mobile genetic elements</span> DNA sequence whose position in the genome is variable

Mobile genetic elements (MGEs) sometimes called selfish genetic elements are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms. In humans, approximately 50% of the genome is thought to be MGEs. MGEs play a distinct role in evolution. Gene duplication events can also happen through the mechanism of MGEs. MGEs can also cause mutations in protein coding regions, which alters the protein functions. These mechanisms can also rearrange genes in the host genome generating variation. These mechanism can increase fitness by gaining new or additional functions. An example of MGEs in evolutionary context are that virulence factors and antibiotic resistance genes of MGEs can be transported to share genetic code with neighboring bacteria. However, MGEs can also decrease fitness by introducing disease-causing alleles or mutations. The set of MGEs in an organism is called a mobilome, which is composed of a large number of plasmids, transposons and viruses.

The detection of genetically modified organisms in food or feed is possible by biochemical means. It can either be qualitative, showing which genetically modified organism (GMO) is present, or quantitative, measuring in which amount a certain GMO is present. Being able to detect a GMO is an important part of GMO labeling, as without detection methods the traceability of GMOs would rely solely on documentation.

<span class="mw-page-title-main">Molecular cloning</span> Set of methods in molecular biology


Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA. Molecular cloning methods are central to many contemporary areas of modern biology and medicine.

<span class="mw-page-title-main">Genome editing</span> Type of genetic engineering

Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts genetic material into a host genome, genome editing targets the insertions to site-specific locations. The basic mechanism involved in genetic manipulations through programmable nucleases is the recognition of target genomic loci and binding of effector DNA-binding domain (DBD), double-strand breaks (DSBs) in target DNA by the restriction endonucleases, and the repair of DSBs through homology-directed recombination (HDR) or non-homologous end joining (NHEJ).

<span class="mw-page-title-main">Genetic engineering techniques</span> Methods used to change the DNA of organisms

Genetic engineering techniques allow the modification of animal and plant genomes. Techniques have been devised to insert, delete, and modify DNA at multiple levels, ranging from a specific base pair in a specific gene to entire genes. There are a number of steps that are followed before a genetically modified organism (GMO) is created. Genetic engineers must first choose what gene they wish to insert, modify, or delete. The gene must then be isolated and incorporated, along with other genetic elements, into a suitable vector. This vector is then used to insert the gene into the host genome, creating a transgenic or edited organism.

<span class="mw-page-title-main">Mutagenesis (molecular biology technique)</span>

In molecular biology, mutagenesis is an important laboratory technique whereby DNA mutations are deliberately engineered to produce libraries of mutant genes, proteins, strains of bacteria, or other genetically modified organisms. The various constituents of a gene, as well as its regulatory elements and its gene products, may be mutated so that the functioning of a genetic locus, process, or product can be examined in detail. The mutation may produce mutant proteins with interesting properties or enhanced or novel functions that may be of commercial use. Mutant strains may also be produced that have practical application or allow the molecular basis of a particular cell function to be investigated.

<span class="mw-page-title-main">Gene drive</span> Way to propagate genes throughout a population

A gene drive is a natural process and technology of genetic engineering that propagates a particular suite of genes throughout a population by altering the probability that a specific allele will be transmitted to offspring. Gene drives can arise through a variety of mechanisms. They have been proposed to provide an effective means of genetically modifying specific populations and entire species.

This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology, cell biology, and evolutionary biology. It is intended as introductory material for novices; for more specific and technical detail, see the article corresponding to each term. For related terms, see Glossary of evolutionary biology.

This glossary of cell and molecular biology is a list of definitions of terms and concepts commonly used in the study of cell biology, molecular biology, and related disciplines, including genetics, microbiology, and biochemistry. It is split across two articles:

References

  1. KapaBiosystems. "High-Throughput NGS Library Preparation Technical Guide". Kapa Biosystems. Retrieved 23 September 2015.
  2. Noble, Charleston; Min, John; Olejarz, Jason; Buchthal, Joanna; Chavez, Alejandro; Smidler, Andrea L.; DeBenedictis, Erika A.; Church, George M.; Nowak, Martin A.; Esvelt, Kevin M. (2019-04-23). "Daisy-chain gene drives for the alteration of local populations". Proceedings of the National Academy of Sciences. 116 (17): 8275–8282. Bibcode:2019PNAS..116.8275N. doi: 10.1073/pnas.1716358116 . ISSN   0027-8424. PMC   6486765 . PMID   30940750.
  3. 1 2 3 4 5 "Project Overview ‹ Daisy Drives". MIT Media Lab. Retrieved 2020-11-24.