Dale's principle

Last updated
Illustration of the major elements in chemical synaptic transmission. An electrochemical wave called an action potential travels along the axon of a neuron. When the wave reaches a synapse, it provokes release of a puff of neurotransmitter molecules, which bind to chemical receptor molecules located in the membrane of another neuron, on the opposite side of the synapse. Chemical synapse schema cropped.jpg
Illustration of the major elements in chemical synaptic transmission. An electrochemical wave called an action potential travels along the axon of a neuron. When the wave reaches a synapse, it provokes release of a puff of neurotransmitter molecules, which bind to chemical receptor molecules located in the membrane of another neuron, on the opposite side of the synapse.

In neuroscience, Dale's principle (or Dale's law) is a rule attributed to the English neuroscientist Henry Hallett Dale. The principle basically states that a neuron performs the same chemical action at all of its synaptic connections to other cells, regardless of the identity of the target cell. However, there has been disagreement about the precise wording.

Because of an ambiguity in the original statement, there are actually two versions of the principle, both of which have now been shown definitively to be false. The term "Dale's principle" was first used by Sir John Eccles in 1954, in a passage reading, "In conformity with Dale's principle (1934, 1952) that the same chemical transmitter is released from all the synaptic terminals of a neurone…" [1] [2] Some modern writers have understood the principle to state that neurons release one and only one transmitter at all of their synapses, which is false. Others, including Eccles himself in later publications, have taken it to mean that neurons release the same set of transmitters at all of their synapses.

Dale himself never stated his "principle" in an explicit form. The source that Eccles referred to was a lecture published by Dale in 1934, called Pharmacology and nerve endings, describing some of the early research into the physiology of neurotransmission. [3] At that time, only two chemical transmitters were known, acetylcholine and noradrenaline (then thought to be adrenaline). [4] In the peripheral nervous system, cholinergic and adrenergic transmission were known to arise from different groups of nerve fibers. Dale was interested in the possibility that a neuron releasing one of these chemicals in the periphery might also release the same chemical at central synapses. He wrote:

It is to be noted, further, that in the cases for which direct evidence is already available, the phenomena of regeneration appear to indicate that the nature of the chemical function, whether cholinergic or adrenergic, is characteristic for each particular neurone, and unchangeable. [3]

And near the end of the paper:

When we are dealing with two different endings of the same sensory neurone, the one peripheral and concerned with vasodilatation and the other at a central synapse, can we suppose that the discovery and identification of a chemical transmitter of axon-reflex vasodilatation would furnish a hint as to the nature of the transmission process at a central synapse? The possibility has at least some value as a stimulus to further experiment. [3]

With only two transmitter chemicals known to exist at the time, the possibility of a neuron releasing more than one transmitter at a single synapse did not enter anybody's mind, and so no care was taken to frame hypotheses in a way that took this possibility into account. The resulting ambiguity in the initial statements led to some confusion in the literature about the precise meaning of the principle. [5] Nicoll and Malenka, for example, understood it to state that a neuron always releases one and only one neurotransmitter at all of its synapses. [6] In this form it is certainly false. Many neurons release more than one neurotransmitter, in what is called "cotransmission". Although there were earlier hints, the first formal proposal of this discovery did not come until 1976. [7] Most neurons release several different chemical messengers. [8] In modern neuroscience, neurons are often classified by their neurotransmitter and most important cotransmitter, for example striatal GABA neurons utilize either opioid peptides or substance P as the primary cotransmitter.

In a 1976 publication, however, Eccles interpreted the principle in a subtly different way:

"I proposed that Dale’s Principle be defined as stating that at all the axonal branches of a neurone, there was liberation of the same transmitter substance or substances." [9]

The addition of "or substances" is critical. With this change, the principle allows for the possibility of neurons releasing more than one transmitter, and only asserts that the same set are released at all synapses. In this form, it continues to be an important rule of thumb, with only a few known exceptions, [10] including David Sulzer and Stephen Rayport's finding that dopamine neurons also release glutamate as a neurotransmitter, but at separate release sites. [11]

Related Research Articles

<span class="mw-page-title-main">Neuron</span> Electrically excitable cell found in the nervous system of animals

A neuron, neurone, or nerve cell is an excitable cell that fires electric signals called action potentials across a neural network in the nervous system. Neurons communicate with other cells via synapses, which are specialized connections that commonly use minute amounts of chemical neurotransmitters to pass the electric signal from the presynaptic neuron to the target cell through the synaptic gap.

<span class="mw-page-title-main">Neurotransmitter</span> Chemical substance that enables neurotransmission

A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell.

<span class="mw-page-title-main">Nervous system</span> Part of an animal that coordinates actions and senses

In biology, the nervous system is the highly complex part of an animal that coordinates its actions and sensory information by transmitting signals to and from different parts of its body. The nervous system detects environmental changes that impact the body, then works in tandem with the endocrine system to respond to such events. Nervous tissue first arose in wormlike organisms about 550 to 600 million years ago. In vertebrates, it consists of two main parts, the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS consists of the brain and spinal cord. The PNS consists mainly of nerves, which are enclosed bundles of the long fibers, or axons, that connect the CNS to every other part of the body. Nerves that transmit signals from the brain are called motor nerves (efferent), while those nerves that transmit information from the body to the CNS are called sensory nerves (afferent). The PNS is divided into two separate subsystems, the somatic and autonomic, nervous systems. The autonomic nervous system is further subdivided into the sympathetic, parasympathetic and enteric nervous systems. The sympathetic nervous system is activated in cases of emergencies to mobilize energy, while the parasympathetic nervous system is activated when organisms are in a relaxed state. The enteric nervous system functions to control the gastrointestinal system. Nerves that exit from the brain are called cranial nerves while those exiting from the spinal cord are called spinal nerves.

<span class="mw-page-title-main">Chemical synapse</span> Biological junctions through which neurons signals can be sent

Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body.

<span class="mw-page-title-main">Acetylcholine</span> Organic chemical and neurotransmitter

Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic.

<span class="mw-page-title-main">Bernard Katz</span> German-British biophysicist (1911–2003)

Sir Bernard Katz, FRS was a German-born British physician and biophysicist, noted for his work on nerve physiology; specifically, for his work on synaptic transmission at the nerve-muscle junction. He shared the Nobel Prize in physiology or medicine in 1970 with Julius Axelrod and Ulf von Euler. He was made a Knight Bachelor in 1969.

<span class="mw-page-title-main">Henry Hallett Dale</span> English pharmacologist and physiologist (1875–1968)

Sir Henry Hallett Dale was an English pharmacologist and physiologist. For his study of acetylcholine as agent in the chemical transmission of nerve pulses (neurotransmission) he shared the 1936 Nobel Prize in Physiology or Medicine with Otto Loewi.

<span class="mw-page-title-main">Neuroeffector junction</span> Site where a motor neuron releases a neurotransmitter to affect a target cell

A neuroeffector junction is a site where a motor neuron releases a neurotransmitter to affect a target—non-neuronal—cell. This junction functions like a synapse. However, unlike most neurons, somatic efferent motor neurons innervate skeletal muscle, and are always excitatory. Visceral efferent neurons innervate smooth muscle, cardiac muscle, and glands, and have the ability to be either excitatory or inhibitory in function. Neuroeffector junctions are known as neuromuscular junctions when the target cell is a muscle fiber.

<span class="mw-page-title-main">Muscarinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of muscarine

Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers. They are mainly found in the parasympathetic nervous system, but also have a role in the sympathetic nervous system in the control of sweat glands.

<span class="mw-page-title-main">Synaptic vesicle</span> Neurotransmitters that are released at the synapse

In a neuron, synaptic vesicles store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impulses between neurons and are constantly recreated by the cell. The area in the axon that holds groups of vesicles is an axon terminal or "terminal bouton". Up to 130 vesicles can be released per bouton over a ten-minute period of stimulation at 0.2 Hz. In the visual cortex of the human brain, synaptic vesicles have an average diameter of 39.5 nanometers (nm) with a standard deviation of 5.1 nm.

Renshaw cells are inhibitory interneurons found in the gray matter of the spinal cord, and are associated in two ways with an alpha motor neuron.

In molecular biology and physiology, something is GABAergic or GABAnergic if it pertains to or affects the neurotransmitter gamma-aminobutyric acid (GABA). For example, a synapse is GABAergic if it uses GABA as its neurotransmitter, and a GABAergic neuron produces GABA. A substance is GABAergic if it produces its effects via interactions with the GABA system, such as by stimulating or blocking neurotransmission.

An autoreceptor is a type of receptor located in the membranes of nerve cells. It serves as part of a negative feedback loop in signal transduction. It is only sensitive to the neurotransmitters or hormones released by the neuron on which the autoreceptor sits. Similarly, a heteroreceptor is sensitive to neurotransmitters and hormones that are not released by the cell on which it sits. A given receptor can act as either an autoreceptor or a heteroreceptor, depending upon the type of transmitter released by the cell on which it is embedded.

<span class="mw-page-title-main">Neurotransmission</span> Impulse transmission between neurons

Neurotransmission is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron, and bind to and react with the receptors on the dendrites of another neuron a short distance away. A similar process occurs in retrograde neurotransmission, where the dendrites of the postsynaptic neuron release retrograde neurotransmitters that signal through receptors that are located on the axon terminal of the presynaptic neuron, mainly at GABAergic and glutamatergic synapses.

<span class="mw-page-title-main">Neuromodulation</span> Regulation of neurons by neurotransmitters

Neuromodulation is the physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. Neuromodulators typically bind to metabotropic, G-protein coupled receptors (GPCRs) to initiate a second messenger signaling cascade that induces a broad, long-lasting signal. This modulation can last for hundreds of milliseconds to several minutes. Some of the effects of neuromodulators include altering intrinsic firing activity, increasing or decreasing voltage-dependent currents, altering synaptic efficacy, increasing bursting activity and reconfiguring synaptic connectivity.

<span class="mw-page-title-main">Synapse</span> Structure connecting neurons in the nervous system

In the nervous system, a synapse is a structure that permits a neuron to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses can be chemical or electrical. In case of electrical synapses, neurons are coupled bidirectionally in continuous-time to each other and are known to produce synchronous network activity in the brain. As such, signal directionality cannot always be defined across electrical synapses.

<span class="mw-page-title-main">Axon terminal</span> Nerve fiber part

Axon terminals are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those impulses to other neurons, muscle cells, or glands. Most presynaptic terminals in the central nervous system are formed along the axons, not at their ends.

A false neurotransmitter is a chemical compound which closely imitates the action of a neurotransmitter in the nervous system. Examples include 5-MeO-αMT and α-methyldopa. Another compound that has been discussed as a possible false neurotransmitter is octopamine.

<span class="mw-page-title-main">David Sulzer</span> American neuroscientist and musician

David Sulzer is an American neuroscientist and musician. He is a professor at Columbia University Medical Center in the departments of psychiatry, neurology, and pharmacology. Sulzer's laboratory investigates the interaction between the synapses of the cerebral cortex and the basal ganglia, including the dopamine system, in habit formation, planning, decision making, and diseases of the system. His lab has developed the first means to optically measure neurotransmission, and has introduced new hypotheses of neurodegeneration in Parkinson's disease, and changes in synapses that produce autism and habit learning.

<span class="mw-page-title-main">Victor P. Whittaker</span>

Victor Percy Whittaker was a British biochemist who pioneered studies on the subcellular fractionation of the brain. He did this by isolating synaptosomes and synaptic vesicles from the mammalian brain and demonstrating that synaptic vesicles store the neurotransmitter acetylcholine.

References

  1. Eccles, JC; Fatt P; Koketsu K (1954). "Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones". J Physiol. 126 (3): 524–62. doi:10.1113/jphysiol.1954.sp005226. PMC   1365877 . PMID   13222354.
  2. Strata, P; Harvey R (1999). "Dale's principle". Brain Res Bull. 50 (5–6): 349–50. doi:10.1016/S0361-9230(99)00100-8. PMID   10643431. S2CID   29406273.
  3. 1 2 3 Dale, HH (1934). "Pharmacology and Nerve-endings (Walter Ernest Dixon Memorial Lecture): (Section of Therapeutics and Pharmacology)". Proceedings of the Royal Society of Medicine. 28 (3): 319–30. doi:10.1177/003591573502800330. PMC   2205701 . PMID   19990108.
  4. The name "adrenaline" is used because this is a historical account. This chemical is now officially called epinephrine
  5. Shepherd, GM (1988). Neurobiology. Oxford University Press. p. 163. ISBN   978-0-19-505171-1.
  6. Nicoll, RA; Malenka RC (1998). "A tale of two transmitters". Science. 281 (5375): 360–1. doi:10.1126/science.281.5375.360. PMID   9705712. S2CID   7859523.
  7. Burnstock, G (2004). "Cotransmission". Current Opinion in Pharmacology. 4 (1): 47–52. doi:10.1016/j.coph.2003.08.001. PMID   15018838.
  8. Trudeau, LE; Gutiérrez R (June 2007). "On cotransmission & neurotransmitter phenotype plasticity". Molecular Interventions. 7 (3): 138–46. doi:10.1124/mi.7.3.5. PMID   17609520. Archived from the original on 2012-08-01.
  9. Eccles, JC (1976). "From electrical to chemical transmission in the central nervous system: The closing address of the Sir Henry Dale Centennial Symposium Cambridge, 19 September 1975". Notes and Records of the Royal Society of London. 30 (2): 219–30. doi:10.1098/rsnr.1976.0015. PMID   12152632. S2CID   35451783.
  10. Sossin, WS; Sweet-Cordero A; Scheller RH (1990). "Dale's hypothesis revisited: different neuropeptides derived from a common prohormone are targeted to different processes". Proc. Natl. Acad. Sci. U.S.A. 87 (12): 4845–8. Bibcode:1990PNAS...87.4845S. doi: 10.1073/pnas.87.12.4845 . PMC   54215 . PMID   2352952.
  11. Sulzer, D; Rayport S (2000). "Dale's principle and glutamate corelease from ventral midbrain dopamine neurons". Amino Acids. 19 (1): 45–52. doi:10.1007/s007260070032. PMID   11026472. S2CID   23822594.