Dangerously irrelevant operator

Last updated

In statistical mechanics and quantum field theory, a dangerously irrelevant operator (or dangerous irrelevant operator) is an operator which is irrelevant at a renormalization group fixed point, yet affects the infrared (IR) physics significantly (e.g. because the vacuum expectation value (VEV) of some field depends sensitively upon the coefficient of this operator).

Contents

Critical phenomena

In the theory of critical phenomena, free energy of a system near the critical point depends analytically on the coefficients of generic (not dangerous) irrelevant operators, while the dependence on the coefficients of dangerously irrelevant operators is non-analytic ( [1] p. 49).

The presence of dangerously irrelevant operators leads to the violation of the hyperscaling relation between the critical exponents and in dimensions. The simplest example ( [1] p. 93) is the critical point of the Ising ferromagnet in dimensions, which is a gaussian theory (free massless scalar ), but the leading irrelevant perturbation is dangerously irrelevant. Another example occurs for the Ising model with random-field disorder, where the fixed point occurs at zero temperature, and the temperature perturbation is dangerously irrelevant ( [1] p. 164).

Quantum field theory

Let us suppose there is a field with a potential depending upon two parameters, and .

Let us also suppose that is positive and nonzero and > . If is zero, there is no stable equilibrium. If the scaling dimension of is , then the scaling dimension of is where is the number of dimensions. It is clear that if the scaling dimension of is negative, is an irrelevant parameter. However, the crucial point is, that the VEV

.

depends very sensitively upon , at least for small values of . Because the nature of infrared physics also depends upon the VEV, it looks very different even for a tiny change in not because the physics in the vicinity of changes much — it hardly changes at all — but because the VEV we are expanding about has changed enormously.

Supersymmetric models with a modulus can often have dangerously irrelevant parameters.

Other uses of the term

Consider a renormalization group (RG) flow triggered at short distances by a relevant perturbation of an ultra-violet (UV) fixed point, and flowing at long distances to an infra-red (IR) fixed point. It may be possible (e.g. in perturbation theory) to monitor how dimensions of UV operators change along the RG flow. In such a situation, one sometimes [2] calls dangerously irrelevant a UV operator whose scaling dimension, while irrelevant at short distances: , receives a negative correction along a renormalization group flow, so that the operator becomes relevant at long distances: . This usage of the term is different from the one originally introduced in statistical physics. [3]

Related Research Articles

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Aircraft flight dynamics</span> Science of air vehicle orientation and control in three dimensions

Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.

<span class="mw-page-title-main">Renormalization</span> Method in physics used to deal with infinities

Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian.

In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.

In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems, the critical exponents depend only on:

String cosmology is a relatively new field that tries to apply equations of string theory to solve the questions of early cosmology. A related area of study is brane cosmology.

<span class="mw-page-title-main">Callan–Symanzik equation</span> Evolutionary equation under renormalization group flow

In physics, the Callan–Symanzik equation is a differential equation describing the evolution of the n-point correlation functions under variation of the energy scale at which the theory is defined and involves the beta function of the theory and the anomalous dimensions.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In quantum field theory the C-theorem states that there exists a positive real function, , depending on the coupling constants of the quantum field theory considered, , and on the energy scale, , which has the following properties:

<span class="mw-page-title-main">SIC-POVM</span> Type of measurement in quantum mechanics

In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.

<span class="mw-page-title-main">Asymptotic safety in quantum gravity</span> Attempt to find a consistent theory of quantum gravity

Asymptotic safety is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences. Although originally proposed by Steven Weinberg to find a theory of quantum gravity, the idea of a nontrivial fixed point providing a possible UV completion can be applied also to other field theories, in particular to perturbatively nonrenormalizable ones. In this respect, it is similar to quantum triviality.

The asymptotic safety approach to quantum gravity provides a nonperturbative notion of renormalization in order to find a consistent and predictive quantum field theory of the gravitational interaction and spacetime geometry. It is based upon a nontrivial fixed point of the corresponding renormalization group (RG) flow such that the running coupling constants approach this fixed point in the ultraviolet (UV) limit. This suffices to avoid divergences in physical observables. Moreover, it has predictive power: Generically an arbitrary starting configuration of coupling constants given at some RG scale does not run into the fixed point for increasing scale, but a subset of configurations might have the desired UV properties. For this reason it is possible that — assuming a particular set of couplings has been measured in an experiment — the requirement of asymptotic safety fixes all remaining couplings in such a way that the UV fixed point is approached.

Massless free scalar bosons are a family of two-dimensional conformal field theories, whose symmetry is described by an abelian affine Lie algebra.

Hamiltonian truncation is a numerical method used to study quantum field theories (QFTs) in spacetime dimensions. Hamiltonian truncation is an adaptation of the Rayleigh–Ritz method from quantum mechanics. It is closely related to the exact diagonalization method used to treat spin systems in condensed matter physics. The method is typically used to study QFTs on spacetimes of the form , specifically to compute the spectrum of the Hamiltonian along . A key feature of Hamiltonian truncation is that an explicit ultraviolet cutoff is introduced, akin to the lattice spacing a in lattice Monte Carlo methods. Since Hamiltonian truncation is a nonperturbative method, it can be used to study strong-coupling phenomena like spontaneous symmetry breaking.

References

  1. 1 2 3 Cardy, John (1996). Scaling and Renormalization in Statistical Physics. Cambridge University Press.
  2. Gukov, Sergei (2016-01-05). "Counting RG flows". Journal of High Energy Physics. 2016 (1): 20. arXiv: 1503.01474 . Bibcode:2016JHEP...01..020G. doi:10.1007/JHEP01(2016)020. ISSN   1029-8479. S2CID   23582290.
  3. Amit, Daniel J; Peliti, Luca (1982). "On dangerous irrelevant operators". Annals of Physics. 140 (2): 207–231. Bibcode:1982AnPhy.140..207A. doi:10.1016/0003-4916(82)90159-2.