Daocheng Solar Radio Telescope

Last updated
China edcp relief location map.jpg
Red pog.svg
DSRT location in the Sichuan province

Daocheng Solar Radio Telescope (DSRT) is a radio telescope in China, that started its operations in 2023 and is used for solar astronomy. It consists of 313 parabolic antennas of 6-meter diameter each, that form an interferometric array. Antennas are equally spaced and form a 3.14 km circle. [1] At the center of the circle is 100-meters-high calibration antenna. The telescope operation frequencies are between from 150 MHz and 450 MHz for detection of coronal mass ejection events. The telescope is located in the mountains on Qinghai-Tibetan Plateau in the Sichuan province, and is operated by the Chinese Meridian Space Weather Monitoring Project II. [2] As of 2023, it is the largest solar telescope in operation. Its construction began in 2021 and was finished in 2022. [3] The operations began in June 2023. [4]

Related Research Articles

<span class="mw-page-title-main">Radio telescope</span> Directional radio antenna used in radio astronomy

A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency portion of the electromagnetic spectrum emitted by astronomical objects, just as optical telescopes are the main observing instrument used in traditional optical astronomy which studies the light wave portion of the spectrum coming from astronomical objects. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night.

<span class="mw-page-title-main">Very Large Array</span> Radio astronomy observatory in New Mexico, US

The Karl G. Jansky Very Large Array (VLA) is a centimeter-wavelength radio astronomy observatory in the southwestern United States. It lies in central New Mexico on the Plains of San Agustin, between the towns of Magdalena and Datil, approximately 50 miles (80 km) west of Socorro. The VLA comprises twenty-eight 25-meter radio telescopes deployed in a Y-shaped array and all the equipment, instrumentation, and computing power to function as an interferometer. Each of the massive telescopes is mounted on double parallel railroad tracks, so the radius and density of the array can be transformed to adjust the balance between its angular resolution and its surface brightness sensitivity. Astronomers using the VLA have made key observations of black holes and protoplanetary disks around young stars, discovered magnetic filaments and traced complex gas motions at the Milky Way's center, probed the Universe's cosmological parameters, and provided new knowledge about the physical mechanisms that produce radio emission.

<span class="mw-page-title-main">NASA Deep Space Network</span> Network of radio communication facilities run by NASA

The NASA Deep Space Network (DSN) is a worldwide network of spacecraft communication ground segment facilities, located in the United States (California), Spain (Madrid), and Australia (Canberra), that supports NASA's interplanetary spacecraft missions. It also performs radio and radar astronomy observations for the exploration of the Solar System and the universe, and supports selected Earth-orbiting missions. DSN is part of the NASA Jet Propulsion Laboratory (JPL).

<span class="mw-page-title-main">Green Bank Telescope</span> Radio telescope in Green Bank, WV, US

The Robert C. Byrd Green Bank Telescope (GBT) in Green Bank, West Virginia, US is the world's largest fully steerable radio telescope, surpassing the Effelsberg 100-m Radio Telescope in Germany. The Green Bank site was part of the National Radio Astronomy Observatory (NRAO) until September 30, 2016. Since October 1, 2016, the telescope has been operated by the independent Green Bank Observatory. The telescope's name honors the late Senator Robert C. Byrd who represented West Virginia and who pushed the funding of the telescope through Congress.

<span class="mw-page-title-main">Atacama Large Millimeter Array</span> 66 radio telescopes in the Atacama Desert of northern Chile

The Atacama Large Millimeter/submillimeter Array (ALMA) is an astronomical interferometer of 66 radio telescopes in the Atacama Desert of northern Chile, which observe electromagnetic radiation at millimeter and submillimeter wavelengths. The array has been constructed on the 5,000 m (16,000 ft) elevation Chajnantor plateau – near the Llano de Chajnantor Observatory and the Atacama Pathfinder Experiment. This location was chosen for its high elevation and low humidity, factors which are crucial to reduce noise and decrease signal attenuation due to Earth's atmosphere. ALMA provides insight on star birth during the early Stelliferous era and detailed imaging of local star and planet formation.

<span class="mw-page-title-main">Parkes Observatory</span> Radio telescope observatory in New South Wales, Australia

Parkes Observatory is a radio astronomy observatory, located 20 kilometres (12 mi) north of the town of Parkes, New South Wales, Australia. It hosts Murriyang, the 64 m CSIRO Parkes Radio Telescope also known as "The Dish", along with two smaller radio telescopes. The 64 m dish was one of several radio antennae used to receive live television images of the Apollo 11 Moon landing. Its scientific contributions over the decades led the ABC to describe it as "the most successful scientific instrument ever built in Australia" after 50 years of operation.

<span class="mw-page-title-main">Square Kilometre Array</span> Radio telescope under construction in Australia and South Africa

The Square Kilometre Array (SKA) is an intergovernmental international radio telescope project being built in Australia (low-frequency) and South Africa (mid-frequency). The combining infrastructure, the Square Kilometre Array Observatory (SKAO), and headquarters, are located at the Jodrell Bank Observatory in the United Kingdom. The SKA cores are being built in the southern hemisphere, where the view of the Milky Way galaxy is the best and radio interference is at its least.

<span class="mw-page-title-main">Low-Frequency Array</span> Radio telescope network located mainly in the Netherlands

The Low-Frequency Array (LOFAR) is a large radio telescope, with an antenna network located mainly in the Netherlands, and spreading across 7 other European countries as of 2019. Originally designed and built by ASTRON, the Netherlands Institute for Radio Astronomy, it was first opened by Queen Beatrix of The Netherlands in 2010, and has since been operated on behalf of the International LOFAR Telescope (ILT) partnership by ASTRON.

<span class="mw-page-title-main">Owens Valley Radio Observatory</span> Observatory

Owens Valley Radio Observatory (OVRO) is a radio astronomy observatory located near Big Pine, California (US) in Owens Valley. It lies east of the Sierra Nevada, approximately 350 kilometers (220 mi) north of Los Angeles and 20 kilometers (12 mi) southeast of Bishop. It was established in 1956, and is owned and operated by the California Institute of Technology (Caltech). The Owens Valley Solar Array portion of the observatory has been operated by New Jersey Institute of Technology (NJIT) since 1997.

<span class="mw-page-title-main">Allen Telescope Array</span> Radio telescope array

The Allen Telescope Array (ATA), formerly known as the One Hectare Telescope (1hT), is a radio telescope array dedicated to astronomical observations and a simultaneous search for extraterrestrial intelligence (SETI). The array is situated at the Hat Creek Radio Observatory in Shasta County, 290 miles (470 km) northeast of San Francisco, California.

<span class="mw-page-title-main">Medicina Radio Observatory</span> Astronomical observatory near Bologna, Italy

The Medicina Radio Observatory is an astronomical observatory located 30 km from Bologna, Italy. It is operated by the Institute for Radio Astronomy of the National Institute for Astrophysics (INAF) of the government of Italy.

<span class="mw-page-title-main">Five-hundred-meter Aperture Spherical Telescope</span> Radio telescope located in Guizhou Province, China

The Five-hundred-meter Aperture Spherical Telescope, nicknamed Tianyan, is a radio telescope located in the Dawodang depression (大窝凼洼地), a natural basin in Pingtang County, Guizhou, southwest China. FAST has a 500 m (1,600 ft) diameter dish constructed in a natural depression in the landscape. It is the world's largest filled-aperture radio telescope and the second-largest single-dish aperture, after the sparsely-filled RATAN-600 in Russia.

<span class="mw-page-title-main">Owens Valley Solar Array</span>

The Owens Valley Solar Array (OVSA), also known as Expanded Owens Valley Solar Array (EOVSA), is an astronomical radio telescope array, located at Owens Valley Radio Observatory (OVRO), near Big Pine, California, with main interests in studying the physics of the Sun. The instruments of the observatory are designed and employed specifically for studying the activities and phenomena of our solar system's sun. Other solar dedicated instruments operated on the site include the Solar Radio Burst Locator (SRBL), the FASR Subsystem Testbed (FST), and the Korean SRBL (KSRBL). The OVSA is operated by the New Jersey Institute of Technology (NJIT), which also operates the Big Bear Solar Observatory.

<span class="mw-page-title-main">Primeval Structure Telescope</span>

The Primeval Structure Telescope (PaST), also called 21 Centimetre Array (21CMA), is a Chinese radio telescope array designed to detect the earliest luminous objects in the universe, including the first stars, supernova explosions, and black holes. All of these objects were strong sources of ultraviolet radiation, so they ionised the material surrounding them. The structure of this reionisation reflects the overall density structure at the redshift of luminous-object formation.

In the early days of planning of the international Square Kilometre Array (SKA) during the 1990s, the Chinese delegation vied to host the SKA, proposing to build several large dishes in the natural limestone depressions (karsts) that dimple its southwestern provinces, and called the proposal Kilometer-square Area Radio Synthesis Telescope (KARST).

<span class="mw-page-title-main">MeerKAT</span> 64 antenna radio telescope. South Africa (launched 2018)

MeerKAT, originally the Karoo Array Telescope, is a radio telescope consisting of 64 antennas in the Meerkat National Park, in the Northern Cape of South Africa. In 2003, South Africa submitted an expression of interest to host the Square Kilometre Array (SKA) Radio Telescope in Africa, and the locally designed and built MeerKAT was incorporated into the first phase of the SKA. MeerKAT was launched in 2018.

<span class="mw-page-title-main">Chinese Deep Space Network</span> Military unit

The Chinese Deep Space Network (CDSN) is a network of large antennas and communication facilities that are used for radio astronomy, radar observations, and spacecraft missions of China. The CDSN is managed by the China Satellite Launch and Tracking Control Center General (CLTC) of the People's Liberation Army Strategic Support Force Space Systems Department.

The Xinjiang Qitai 110m Radio Telescope (QTT) is a planned radio telescope to be built in Qitai County in Xinjiang, China. Upon completion, which is scheduled for 2028, it will be the world's largest fully steerable single-dish radio telescope. It is intended to operate at 150 MHz to 115 GHz. The construction of the antenna project is under the leadership of the Xinjiang Astronomical Observatory of the Chinese Academy of Sciences.

<span class="mw-page-title-main">Nançay Radio Observatory</span> Radio observatory in France

The Nançay Radio Observatory, opened in 1956, is part of Paris Observatory, and also associated with the University of Orléans. It is located in the department of Cher in the Sologne region of France. The station consists of several instruments. Most iconic of these is the large decimetric radio telescope, which is one of the largest radio telescopes in the world. Long established are also the radio heliograph, a T-shaped array, and the decametric array operating at wavelengths between 3 m and 30 m.

References

  1. "China's new radio telescope will have dangerous solar eruptions in its gaze". South China Morning Post. 5 July 2022. Retrieved 26 July 2023.
  2. Yan, Jingye; Wu, Lin; Yang, Yang; Wu, Ji (1 July 2022), "Daocheng solar radio telescope: system and first results", 44th Cospar Scientific Assembly. Held 16-24 July, 44: 1886, Bibcode:2022cosp...44.1886Y , retrieved 26 July 2023
  3. Ye, Yvaine (14 November 2022). "World's largest solar telescope array is now complete". Nature. doi:10.1038/d41586-022-03595-7. PMID   36376500. S2CID   253521931 . Retrieved 26 July 2023.
  4. Jones, Andrew (29 November 2022). "China completes world's largest solar telescope array with a whopping 313 dishes". Space.com. Retrieved 26 July 2023.