Data Terminal Ready

Last updated

Data Terminal Ready (DTR) is a control signal in RS-232 serial communications, transmitted from data terminal equipment (DTE), such as a computer, to data communications equipment (DCE), for example a modem, to indicate that the terminal is ready for communications and the modem may initiate a communications channel.

Contents

The DTR signal is present on pin 20 of the 22-wire RS-232 interface using a DB-25 connector, and on pin 4 of a newer DE-9 serial port. The signal is asserted (logic "1") by raising the voltage of the pin from negative to positive. Dropping the signal back to its negative state indicates to the modem that the communications session shall be terminated.

Signaling for modems

The DTR signal is an important call control signal for a data modem. According to the RS232 standard, dropping DTR from active to inactive for at least two seconds tells the modem to disconnect (end) a call or data connection. When a modem is being used for automatic answering (such as with the command ATS0=1), the DTR signal confirms to the modem that the computer is available to accept a call. [1]

When a computer wants to place a call, it asserts the DTR signal before sending commands. If the DTR signal is not asserted and the modem receives a dial command, modems either refuse to place the call, or they silently disable DTR support for the duration of that call; the actual behavior depends on the modem software.

Other aspects of responses to changes in DTR can be manually overridden or configured on most newer modems. [2] [3] and higher values are used by some vendors. [4]

Many external modems have LED indicators on the front, one of which is TR ("terminal ready"). This light follows the state of the DTR pin. The light is on when DTR is high, and off when it is low. Modems will typically keep the TR light illuminated when the AT&D0 command is used to force the modem to ignore the DTR signal, regardless of the pin's actual state.

Null modem operation

When a serial connection is made between two computers using a null modem adapter, the DTR and the Data Carrier Detect (DCD) lines are typically paired. This allows both ends of the connection to sense when the connection is active.

On many operating systems, including Windows, the DTR line is held low while the serial port is unused and not being controlled by any applications.

Use for flow control

On some printers with serial interfaces, the DTR line is used for hardware flow control, similar to the use of RTS and CTS for modems. This practice is not consistent; other printers define RTS for this same purpose.

When DTR is used for flow control, it manages the flow of data from the printer to the computer. However, because during printing, the bulk of the data is from the computer to the printer, the importance of flow control in the opposite direction is minimal.

Use as a power pin

On some hardware the DTR line (along with RTS) may be used to provide power. The most notable example of this is a serial mouse. The DE-9 serial port on the PC does not provide any dedicated power source. The mouse driver holds the DTR and RTS lines high at all times so that the device has a source of power.

Another category of devices commonly powered by the DTR line includes converters between RS-232 and other serial standards such as RS-422 and RS-485.

Use for transmit keying

In many radio modem implementations, especially in amateur radio, the DTR is used to control transmission. The radio receives when DTR is not asserted, typically passing audio in to a software modem. When DTR is asserted the radio transmits audio coming from the software modem. In cases where the radio is controlled by serial commands (e.g. a computer aided transceiver interface) the control data flows regardless of DTR state.

See also

Related Research Articles

<span class="mw-page-title-main">RS-232</span> Standard for serial communication

In telecommunications, RS-232 or Recommended Standard 232 is a standard originally introduced in 1960 for serial communication transmission of data. It formally defines signals connecting between a DTE such as a computer terminal or PC, and a DCE, such as a modem. The standard defines the electrical characteristics and timing of signals, the meaning of signals, and the physical size and pinout of connectors. The current version of the standard is TIA-232-F Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange, issued in 1997. The RS-232 standard had been commonly used in computer serial ports and is still widely used in industrial communication devices.

<span class="mw-page-title-main">Data circuit-terminating equipment</span> Communications system component

A data circuit-terminating equipment (DCE) is a device that sits between the data terminal equipment (DTE) and a data transmission circuit. It is also called data communication(s) equipment and data carrier equipment. Usually, the DTE device is the terminal, and the DCE is a modem.

A terminal adapter or TA is a device that connects a terminal device – a computer, a mobile communications device, or other – to a communications network.

<span class="mw-page-title-main">Data terminal equipment</span> Communications system equipment

Data terminal equipment (DTE) is an end instrument that converts user information into signals or reconverts received signals. It is also called data processing terminal equipment or tail circuit. A DTE device communicates with the data circuit-terminating equipment (DCE), such as a modem. The DTE/DCE classification was introduced by IBM.

<span class="mw-page-title-main">Serial port</span> Communication interface transmitting information sequentially

On computers, a serial port is a serial communication interface through which information transfers in or out sequentially one bit at a time. This is in contrast to a parallel port, which communicates multiple bits simultaneously in parallel. Throughout most of the history of personal computers, data has been transferred through serial ports to devices such as modems, terminals, various peripherals, and directly between computers.

Loopback is the routing of electronic signals or digital data streams back to their source without intentional processing or modification. It is primarily a means of testing the communications infrastructure.

The Hayes command set is a specific command language originally developed by Dale Heatherington and Dennis Hayes for the Hayes Smartmodem 300 baud modem in 1981.

GeoPort is a serial data system used on some models of the Apple Macintosh that could be externally clocked to run at a 2 megabit per second data rate. GeoPort slightly modified the existing Mac serial port pins to allow the computer's internal DSP hardware or software to send data that, when passed to a digital-to-analog converter, emulated various devices such as modems and fax machines. GeoPort could be found on late-model 68K-based machines as well as many pre-USB Power Macintosh models and PiPPiN. Some later Macintosh models also included an internal GeoPort via an internal connector on the Communications Slot. Apple GeoPort technology is now obsolete, and modem support is typically offered through USB.

<span class="mw-page-title-main">Computer terminal</span> Computer input/output device for users

A computer terminal is an electronic or electromechanical hardware device that can be used for entering data into, and transcribing data from, a computer or a computing system. The teletype was an example of an early-day hard-copy terminal and predated the use of a computer screen by decades. Starting in the mid-1970s with machines such as the Sphere 1, Sol-20, and Apple I, terminal circuitry began to be integrated into personal and workstation computer systems, with the computer handling character generation and outputting to a CRT display such as a computer monitor or, sometimes, a consumer TV.

<span class="mw-page-title-main">Mattel Aquarius</span> 1983 home computer

Aquarius is a home computer designed by Radofin and released by Mattel Electronics in 1983. Based on the Zilog Z80 microprocessor, the system has a rubber chiclet keyboard, 4K of RAM, and a subset of Microsoft BASIC in ROM. It connects to a television set for audiovisual output, and uses a cassette tape recorder for secondary data storage. A limited number of peripherals, such as a 40-column thermal printer, a 4-color printer/plotter, and a 300 baud modem, were released. The Aquarius was discontinued in October 1983, only a few months after it was launched.

<span class="mw-page-title-main">RS-422</span> Standard for serial communication

RS-422, also known as TIA/EIA-422, is a technical standard originated by the Electronic Industries Alliance, first issued in 1975, that specifies electrical characteristics of a digital signaling circuit. It was meant to be the foundation of a suite of standards that would replace the older RS-232C standard with standards that offered much higher speed, better immunity from noise, and longer cable lengths. RS-422 systems can transmit data at rates as high as 10 Mbit/s, or may be sent on cables as long as 1,200 meters (3,900 ft) at lower rates. It is closely related to RS-423, which uses the same signaling systems but on a different wiring arrangement.

<span class="mw-page-title-main">Null modem</span> Serial cable connecting two computers

Null modem is a communication method to directly connect two DTEs using an RS-232 serial cable. The name stems from the historical use of RS-232 cables to connect two teleprinter devices or two modems in order to communicate with one another; null modem communication refers to using a crossed-over RS-232 cable to connect the teleprinters directly to one another without the modems. It is also used to serially connect a computer to a printer, since both are DTE, and is known as a Printer Cable.

<span class="mw-page-title-main">Terminal node controller</span>

A terminal node controller (TNC) is a device used by amateur radio operators to participate in AX.25 packet radio networks. It is similar in function to the Packet Assembler/Disassemblers used on X.25 networks, with the addition of a modem to convert baseband digital signals to audio tones.

A breakout box is a piece of electrical test equipment used to support integration testing, expedite maintenance, and streamline the troubleshooting process at the system, subsystem, and component-level by simplifying the access to test signals. Breakout boxes span a wide spectrum of functionality. Some serve to break out every signal connection coming into a unit, while others breakout only specific signals commonly monitored for either testing or troubleshooting purposes. Some have electrical connectors, and others have optical fiber connectors.

In data communications, flow control is the process of managing the rate of data transmission between two nodes to prevent a fast sender from overwhelming a slow receiver. Flow control should be distinguished from congestion control, which is used for controlling the flow of data when congestion has actually occurred. Flow control mechanisms can be classified by whether or not the receiving node sends feedback to the sending node.

In computer networking, DECserver initially referred to a highly successful family of asynchronous console server / terminal server / print server products introduced by Digital Equipment Corporation (DEC) and later referred to a class of UNIX-variant application and file server products based upon the MIPS processor. In February 1998, DEC sold its Network Products Business to Cabletron, which then spun out as its own company, Digital Networks, in September 2000.

Command mode and Data mode refers to the two modes in which a computer modem may operate. These modes are defined in the Hayes command set, which is the de facto standard for all modems. These modes exist because there is only one channel of communication between the modem and the computer, which must carry both the computer's commands to the modem, as well as the data that the modem is enlisted to transmit to the remote party over the telephone line.

Software flow control is a method of flow control used in computer data links, especially RS-232 serial. It uses special codes, transmitted in-band, over the primary communications channel. These codes are generally called XOFF and XON. Thus, "software flow control" is sometimes called "XON/XOFF flow control". This is in contrast to flow control via dedicated out-of-band signals — "hardware flow control" — such as RS-232 RTS/CTS.

Data Carrier Detect (DCD) or Carrier Detect (CD) is a control signal present inside an RS-232 serial communications cable that goes between a computer and another device, such as a modem. This signal is a simple "high/low" status bit that is sent from a data communications equipment (DCE) to a data terminal equipment (DTE), i.e., from the modem or other peripheral to a computer in a typical scenario. It is present on virtually all PC serial ports - pin 1 of a nine-pin (DE9) serial port, or pin eight over a 25-pin (DB25) port. Its purpose varies depending on the device connected, but the most specific meaning is to indicate when a modem is connected to another remote modem via telephone lines.

In telecommunications, RS-366, later known as EIA-366, defines a standard for serial communications between computers and an auto dialer, which is used to dial telephones. It was intended to be used to automate the operation of modems. The standard uses the same DB25 connectors and electrical signalling standards of the well-known RS-232 standard, which RS-366 was designed to support. The CCITT had a matching standard, V.25.

References

  1. "6.2.9 Circuit 108 (data terminal ready) behaviour", V.250 : Serial asynchronous automatic dialling and control (05/99, 07/03) (PDF), ITU-T/Telecommunication Standardization Bureau
  2. "8. Controlling EIA-232 Signaling", Courier V-Everything Command Reference, U.S. Robotics , retrieved 2009-11-23
  3. "A.4 AT&D3 Implementation Issues", PnP for COM Devices, rev 0.92 (RTF), Microsoft and Hayes, February 28, 1995
  4. Nick Robins (2003), Alpha Micro GPRS Modem Functional Overview 1.0 (PDF), Alpha Micro Components, archived from the original (PDF) on 2007-01-25, retrieved 2009-11-23