Decision matrix

Last updated

A decision matrix is a list of values in rows and columns that allows an analyst to systematically identify, analyze, and rate the performance of relationships between sets of values and information. Elements of a decision matrix show decisions based on certain decision criteria. The matrix is useful for looking at large masses of decision factors and assessing each factor's relative significance by weighting them by importance. [1]

Contents

Multiple-criteria decision analysis

The term decision matrix is used to describe a multiple-criteria decision analysis (MCDA) problem. An MCDA problem, where there are M alternative options and each needs to be assessed on N criteria, can be described by the decision matrix which has N rows and M columns, or M × N elements, as shown in the following table. Each element, such as Xij, is either a single numerical value or a single grade, representing the performance of alternative i on criterion j. For example, if alternative i is "car i", criterion j is "engine quality" assessed by five grades {Exceptional, Good, Average, Below Average, Poor}, and "Car i" is assessed to be "Good" on "engine quality", then Xij = "Good". These assessments may be replaced by scores, from 1 to 5. Sums of scores may then be compared and ranked, to show the winning proposal. [2]

Example of Comparison
Alternative 1Alternative 2...Alternative M
Criterion 1x11x12...x1M
Criterion 2x21x22...x2M
.........Xij = Good...
Criterion NxN1xN2...xNM
Sum
Rank
StatusNoNo

Belief decision matrix

Similar to a decision matrix, a belief decision matrix is used to describe a multiple criteria decision analysis (MCDA) problem in the Evidential Reasoning Approach. Instead of being a single numerical value or a single grade as in a decision matrix, each element in a belief decision matrix is a belief distribution.

For example, suppose Alternative i is "Car i", Criterion j is "Engine Quality" assessed by five grades {Excellent, Good, Average, Below Average, Poor}, and "Car i" is assessed to be “Excellent” on "Engine Quality" with a high degree of belief (e.g. 0.6) due to its low fuel consumption, low vibration and high responsiveness. At the same time, the quality is also assessed to be only “Good” with a lower degree of belief (e.g. 0.4 or less) because its quietness and starting can still be improved. If this is the case, then we have Xij={ (Excellent, 0.6), (Good, 0.4)}, or Xij={ (Excellent, 0.6), (Good, 0.4), (Average, 0), (Below Average, 0), (Poor, 0)}.

A conventional decision matrix is a special case of belief decision matrix when only one belief degree in a belief structure is 1 and the others are 0.

Criterion 1Criterion 2...Criterion N
Alternative 1x11x12...x1N
Alternative 2x21x22...x2N
.........Xij={ (Excellent, 0.6), (Good, 0.4)}...
Alternative MxM1xM2...xMN

See also

Related Research Articles

<span class="mw-page-title-main">Multiple-criteria decision analysis</span> Operations research that evaluates multiple conflicting criteria in decision making

Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making. Conflicting criteria are typical in evaluating options: cost or price is usually one of the main criteria, and some measure of quality is typically another criterion, easily in conflict with the cost. In purchasing a car, cost, comfort, safety, and fuel economy may be some of the main criteria we consider – it is unusual that the cheapest car is the most comfortable and the safest one. In portfolio management, managers are interested in getting high returns while simultaneously reducing risks; however, the stocks that have the potential of bringing high returns typically carry high risk of losing money. In a service industry, customer satisfaction and the cost of providing service are fundamental conflicting criteria.

<span class="mw-page-title-main">Analytic hierarchy process</span> A structured technique for organizing and analyzing complex decisions

In the theory of decision making, the analytic hierarchy process (AHP), also analytical hierarchy process, is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology. It was developed by Thomas L. Saaty in the 1970s; Saaty partnered with Ernest Forman to develop Expert Choice software in 1983, and AHP has been extensively studied and refined since then. It represents an accurate approach to quantifying the weights of decision criteria. Individual experts’ experiences are utilized to estimate the relative magnitudes of factors through pair-wise comparisons. Each of the respondents compares the relative importance each pair of items using a specially designed questionnaire.

<span class="mw-page-title-main">Optimal design</span> Experimental design that is optimal with respect to some statistical criterion

In the design of experiments, optimal designs are a class of experimental designs that are optimal with respect to some statistical criterion. The creation of this field of statistics has been credited to Danish statistician Kirstine Smith.

In US education terminology, rubric is "a scoring guide used to evaluate the quality of students' constructed responses". Put simply, it is a set of criteria for grading assignments. Rubrics usually contain evaluative criteria, quality definitions for those criteria at particular levels of achievement, and a scoring strategy. They are often presented in table format and can be used by teachers when marking, and by students when planning their work. In UK education the rubric is the set instructions at the head of an examination paper.

The decision-matrix method, also Pugh method or Pugh concept selection, invented by Stuart Pugh, is a qualitative technique used to rank the multi-dimensional options of an option set. It is frequently used in engineering for making design decisions but can also be used to rank investment options, vendor options, product options or any other set of multidimensional entities.

Model selection is the task of selecting a statistical model from a set of candidate models, given data. In the simplest cases, a pre-existing set of data is considered. However, the task can also involve the design of experiments such that the data collected is well-suited to the problem of model selection. Given candidate models of similar predictive or explanatory power, the simplest model is most likely to be the best choice.

The rational planning model is a model of the planning process involving a number of rational actions or steps. Taylor (1998) outlines five steps, as follows:

In decision theory, the evidential reasoning approach (ER) is a generic evidence-based multi-criteria decision analysis (MCDA) approach for dealing with problems having both quantitative and qualitative criteria under various uncertainties including ignorance and randomness. It has been used to support various decision analysis, assessment and evaluation activities such as environmental impact assessment and organizational self-assessment based on a range of quality models.

A belief structure is a distributed assessment with beliefs.

Decision-making software is software for computer applications that help individuals and organisations make choices and take decisions, typically by ranking, prioritizing or choosing from a number of options.

In decision theory, the weighted sum model (WSM), also called weighted linear combination (WLC) or simple additive weighting (SAW), is the best known and simplest multi-criteria decision analysis (MCDA) / multi-criteria decision making method for evaluating a number of alternatives in terms of a number of decision criteria.

The weighted product model (WPM) is a popular multi-criteria decision analysis (MCDA) / multi-criteria decision making (MCDM) method. It is similar to the weighted sum model (WSM). The main difference is that instead of addition in the main mathematical operation, there is multiplication.

The decision-making paradox is a phenomenon related to decision-making and the quest for determining reliable decision-making methods. It was first described by Triantaphyllou, and has been recognized in the related literature as a fundamental paradox in multi-criteria decision analysis (MCDA), multi-criteria decision making (MCDM) and decision analysis since then.

Potentially All Pairwise RanKings of all possible Alternatives (PAPRIKA) is a method for multi-criteria decision making (MCDM) or conjoint analysis, as implemented by decision-making software and conjoint analysis products 1000minds and MeenyMo.

The Preference Ranking Organization METHod for Enrichment of Evaluations and its descriptive complement geometrical analysis for interactive aid are better known as the Promethee and Gaia methods.

In multiple criteria decision aiding (MCDA), multicriteria classification involves problems where a finite set of alternative actions should be assigned into a predefined set of preferentially ordered categories (classes). For example, credit analysts classify loan applications into risk categories, customers rate products and classify them into attractiveness groups, candidates for a job position are evaluated and their applications are approved or rejected, technical systems are prioritized for inspection on the basis of their failure risk, clinicians classify patients according to the extent to which they have a complex disease or not, etc.

Majority judgment (MJ) is a single-winner voting system proposed in 2007 by Michel Balinski and Rida Laraki. It is a highest median rule, i.e., a cardinal voting system that elects the candidate with the highest median rating.

The VIKOR method is a multi-criteria decision making (MCDM) or multi-criteria decision analysis method. It was originally developed by Serafim Opricovic to solve decision problems with conflicting and noncommensurable criteria, assuming that compromise is acceptable for conflict resolution, the decision maker wants a solution that is the closest to the ideal, and the alternatives are evaluated according to all established criteria. VIKOR ranks alternatives and determines the solution named compromise that is the closest to the ideal.

Intelligent Decision System (IDS) is a software package for multiple criteria decision analysis. It can handle hybrid types of uncertainty, including probability uncertainty, missing data, subjective judgements, interval data, and any combination of those types of uncertainty. It uses belief function for problem modelling and the Evidential Reasoning Approach for attribute aggregation. The outcomes of the analysis include not only ranking of alternative courses of action based on average scores, but also aggregated performance distribution of each alternative for supporting informed and transparent decision making.

DEX is a qualitative multi-criteria decision analysis (MCDA) method for decision making and is implemented in DEXi software. This method was developed by a research team led by Bohanec, Bratko, and Rajkovič. The method supports decision makers in making complex decisions based on multiple, possibly conflicting, attributes. In DEX, all attributes are qualitative and can take values represented by words, such as “low” or “excellent”. Attributes are generally organized in a hierarchy. The evaluation of decision alternatives is carried out by utility functions, which are represented in the form of decision rules. All attributes are assumed to be discrete. Additionally, they can be preferentially ordered, so that a higher ordinal value represents a better preference.

References

  1. "When to use a weighted decision matrix". Weighted Decision. 15 October 2013. Retrieved 25 May 2022.
  2. "The Options Matrix Tool (OMT): A Strategic Decision-making Tool to Evaluate Decision Alternatives". ecommons.cornell.edu. Retrieved 20 December 2022.

Sources

  • Shafer, G.A. (1976). Mathematical Theory of Evidence . Princeton University Press. ISBN   0-691-08175-1.
  • Yang J.B., Singh M.G. (1994). "An evidential reasoning approach for multiple attribute decision making with uncertainty". IEEE Transactions on Systems, Man, and Cybernetics. 24: 1–18. doi:10.1109/21.259681.
  • Yang J.B., Xu D.L. (2002). "On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty". IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans. 32 (3): 289–304. doi:10.1109/TSMCA.2002.802746.