Declarative learning

Last updated

Declarative learning is acquiring information that one can speak about (contrast with motor learning). The capital of a state is a declarative piece of information, while knowing how to ride a bike is not. Episodic memory and semantic memory are a further division of declarative information.

Contents

Overview

There are two ways to learn a telephone number: memorize it using your declarative memory, or use it many times to create a habit. Habit learning is called procedural memory.

Declarative memory uses your medial temporal lobe and enables you to recall the telephone number at will. Procedural memory activates the telephone number only when you are at the telephone, and uses your right-hemisphere's skill, pattern recognition.

Research indicates declarative and habit memory compete with each other during distraction. [1] When in doubt, the brain chooses habit memory because it is automatic.

Several researchers at the UCLA tested the hypothesis that distraction can change the way a task is learned. In their experiment, they played a series of high and low tones while asking subjects to do a simple probabilistic classification task. [2] In the single task (ST) case, subjects only learned to predict the weather. In the dual task (DT) case, subjects were also asked to count the number of high pitched tones. The ability to use the learned knowledge was found to be about the same in either case. However, subjects were significantly better at identifying cue-associations (a test of declarative knowledge) when trained under ST rather than DT conditions. Furthermore, fMRI showed activity in the hippocampus was associated with performance under ST, but not DT conditions, whereas activity in the putamen showed the opposite correlation. The authors concluded that while distraction may not decrease the level of learning, it can result in a reduced ability to flexibly use that knowledge [3]

Empirical evidence

Declarative learning is an important skill that we use to acquire new information, such as in education. Declarative learning can be seen as what we know, for example we know that Paris is the capital of France.

Children

Sleep deprivation and learning have continually been linked together. The common belief is that sleep deprivation can affect children when they are learning at school or in any daily task. However, different types of learning are processed differently and have different outcomes when a child is sleep deprived. A study conducted by Csabi, Benedk, Janacesk, Katona and Nemeth [4] looked at the impairment of declarative and nondeclarative learning when a child is sleep-deprived. Nondeclarative learning was measured by having children perform an Alternating Serial Reaction Time (ASRT) task. This task had a dog's head appear in four empty circles. Every time the dog's head appeared the child had to press the corresponding letter as quickly and correctly as possible. Declarative learning was measured by "The War of the Ghosts" test, which is a recall test where the children were told a short story consisting of thirty-six sentences and had to then recall it immediately after hearing it. The study showed that nondeclarative learning was preserved and not affected when sleep-deprived children took the ASRT task. However, declarative learning greatly declined in the face of sleep-deprivation. [4] Declarative Learning can be associated with tasks that require a greater amount of attention, such as learning in school. Therefore, the lack of sleep a child obtains can affect declarative learning and can affect how well a child learns during school overall.

Research focusing on children has also looked at different ways of utilizing declarative learning when it comes to memorizing tasks. Backhaus, Hoeckesfeld, Born, Hohagen, and Junghanns [5] conducted a study to see if sleeping after a task enhances declarative learning in children. Children between the ages of nine and twelve were given a word association task consisting of forty related word pairs. The lists of words were repeated continuously until the child participating could recall at least twenty words out of the forty given. The child was allowed to go to sleep for the night and was tested for recall right after they had woken up. The child was then asked to go about their day and was tested for recall later during the day. The study showed that declarative learning, memory and retention significantly increased only after an interval of sleep that immediately followed learning. [5] This research provides evidence of sleep in the role of declarative learning, sleep consolidation, as well as stresses the importance of sleep for declarative learning during childhood.

Adults

Declarative learning is not solely affected by sleeping but can also be affected by levels of stress as well as hormones. In a study conducted by Espin et al. [6] stress, hormones and menstrual cycle phases in women, were tested for their effect on declarative learning in young adults. Participants were asked to participate in a Trier Social Stress Test (TSST) where they were asked to give a speech to a simulated committee about why they deserved the position for their dream job. If the participant did not finish their speech in five minutes the committee would then ask standardized questions the researchers had provided. After the speech the participant was asked to complete a five-minute arithmetic task. The TSST was set up to induce stress in the participants before they proceeded to the declarative learning task. For the Declarative Learning task the participants were asked to complete a Rey Auditory Verbal Learning Task (RAVLT), which has the participants look over a set of words and then asks them to recall as many as they can. The study showed that if women were not exposed to the TSST task before the RAVLT there was an increase of declarative learning and recall when compared to the men. However, when the participants were exposed to the TSST task before the RAVLT then declarative learning and recall were equal for both men and women. Women during the study that were menstruating and exposed to the TSST task showed lower levels of stress than women not menstruating, they also had an increase of declarative learning and recall when compared to men and women not menstruating . [6] The study not only shows that sex hormones could reduce stress in women but also that stress can have a negative effect on declarative learning. This could affect the capability of students learning and passing their classes and also the ability to be able to complete tasks in the workplace.

Sleep benefits declarative learning across a range of tasks for children and young adults, however little is known of the role that sleep plays for adults when it comes to declarative learning. A study conducted by Wilson, Baran, Schott, Ivry and Spencer [7] sought to see if sleep plays an important role in declarative learning and motor skill learning in adults. Participants were given two tasks to assess motor skill learning and another to assess declarative learning. The participants learned a motor sequence and list of word pairs during either the morning or evening. Memory tests were given to the participants twice, at twelve and twenty-four hours after training. This gap allowed for a period of sleep, a recall test, a period of normal wake, and a recall test. The study results showed that motor skills were not dependent on sleep. However, declarative learning tasks and recall increased when the participants slept before the recall test. The study also showed that a change in sleep patterns and networks activated during sleep may contribute to age-related decline in motor sequences but does not affect declarative learning. [7] This study shows that even though the role of sleep may change throughout age it is still very important to declarative learning regardless of age.

Another aspect of research is seeing the importance of declarative learning in both implicit and explicit learning tasks. In a study conducted by Matthew Kirkhart [8] undergraduate participants underwent implicit and explicit artificial-grammar learning tasks to see how declarative learning functioned in each. For the Implicit task participants were told that they would see a series of letter strings, a group of letters that appear in a word, and had to judge if the string were well formed or not well formed. For the Explicit task participants were told they had to reproduce letter strings according to a set of rules, which they had to determine and would be tested on later. The participants were then shown a series of letter strings and asked if they followed the rules or not. The results showed that declarative learning was not required for implicit learning but was related to the consistency in performance. It was seen, however, that declarative learning is required for explicit learning and consistency of performance. This shows that adults are using declarative learning when undergoing explicit tasks, such as memorizing formulas for a statistics class. This research provides more evidence of the importance of declarative learning in education for not just children but for adults as well.

See also

Related Research Articles

Long-term memory (LTM) is the stage of the Atkinson–Shiffrin memory model in which informative knowledge is held indefinitely. It is defined in contrast to sensory memory, the initial stage, and short-term or working memory, the second stage, which persists for about 18 to 30 seconds. LTM is grouped into two categories known as explicit memory and implicit memory. Explicit memory is broken down into episodic and semantic memory, while implicit memory includes procedural memory and emotional conditioning.

Multiple hypotheses explain the possible connections between sleep and learning in humans. Research indicates that sleep does more than allow the brain to rest; it may also aid the consolidation of long-term memories.

Source amnesia is the inability to remember where, when or how previously learned information has been acquired, while retaining the factual knowledge. This branch of amnesia is associated with the malfunctioning of one's explicit memory. It is likely that the disconnect between having the knowledge and remembering the context in which the knowledge was acquired is due to a dissociation between semantic and episodic memory – an individual retains the semantic knowledge, but lacks the episodic knowledge to indicate the context in which the knowledge was gained.

<span class="mw-page-title-main">Visual memory</span> Ability to process visual and spatial information

Visual memory describes the relationship between perceptual processing and the encoding, storage and retrieval of the resulting neural representations. Visual memory occurs over a broad time range spanning from eye movements to years in order to visually navigate to a previously visited location. Visual memory is a form of memory which preserves some characteristics of our senses pertaining to visual experience. We are able to place in memory visual information which resembles objects, places, animals or people in a mental image. The experience of visual memory is also referred to as the mind's eye through which we can retrieve from our memory a mental image of original objects, places, animals or people. Visual memory is one of several cognitive systems, which are all interconnected parts that combine to form the human memory. Types of palinopsia, the persistence or recurrence of a visual image after the stimulus has been removed, is a dysfunction of visual memory.

Explicit memory is one of the two main types of long-term human memory, the other of which is implicit memory. Explicit memory is the conscious, intentional recollection of factual information, previous experiences, and concepts. This type of memory is dependent upon three processes: acquisition, consolidation, and retrieval.

The Levels of Processing model, created by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. Deeper levels of analysis produce more elaborate, longer-lasting, and stronger memory traces than shallow levels of analysis. Depth of processing falls on a shallow to deep continuum. Shallow processing leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing results in a more durable memory trace. There are three levels of processing in this model. Structural processing, or visual, is when we remember only the physical quality of the word E.g how the word is spelled and how letters look. Phonemic processing includes remembering the word by the way it sounds. E.G the word tall rhymes with fall. Lastly, we have semantic processing in which we encode the meaning of the word with another word that is similar of has similar meaning. Once the word is perceived, the brain allows for a deeper processing.

Artificial grammar learning (AGL) is a paradigm of study within cognitive psychology and linguistics. Its goal is to investigate the processes that underlie human language learning by testing subjects' ability to learn a made-up grammar in a laboratory setting. It was developed to evaluate the processes of human language learning but has also been utilized to study implicit learning in a more general sense. The area of interest is typically the subjects' ability to detect patterns and statistical regularities during a training phase and then use their new knowledge of those patterns in a testing phase. The testing phase can either use the symbols or sounds used in the training phase or transfer the patterns to another set of symbols or sounds as surface structure.

Implicit cognition refers to cognitive processes that occur outside conscious awareness or conscious control. This includes domains such as learning, perception, or memory which may influence a person's behavior without their conscious awareness of those influences.

Indirect memory tests assess the retention of information without direct reference to the source of information. Participants are given tasks designed to elicit knowledge that was acquired incidentally or unconsciously and is evident when performance shows greater inclination towards items initially presented than new items. Performance on indirect tests may reflect contributions of implicit memory, the effects of priming, a preference to respond to previously experienced stimuli over novel stimuli. Types of indirect memory tests include the implicit association test, the lexical decision task, the word stem completion task, artificial grammar learning, word fragment completion, and the serial reaction time task.

Memory consolidation is a category of processes that stabilize a memory trace after its initial acquisition. A memory trace is a change in the nervous system caused by memorizing something. Consolidation is distinguished into two specific processes. The first, synaptic consolidation, which is thought to correspond to late-phase long-term potentiation, occurs on a small scale in the synaptic connections and neural circuits within the first few hours after learning. The second process is systems consolidation, occurring on a much larger scale in the brain, rendering hippocampus-dependent memories independent of the hippocampus over a period of weeks to years. Recently, a third process has become the focus of research, reconsolidation, in which previously consolidated memories can be made labile again through reactivation of the memory trace.

Procedural memory is a type of implicit memory which aids the performance of particular types of tasks without conscious awareness of these previous experiences.

In psychology, implicit memory is one of the two main types of long-term human memory. It is acquired and used unconsciously, and can affect thoughts and behaviours. One of its most common forms is procedural memory, which allows people to perform certain tasks without conscious awareness of these previous experiences; for example, remembering how to tie one's shoes or ride a bicycle without consciously thinking about those activities.

Implicit learning is the learning of complex information in an unintentional manner, without awareness of what has been learned. According to Frensch and Rünger (2003) the general definition of implicit learning is still subject to some controversy, although the topic has had some significant developments since the 1960s. Implicit learning may require a certain minimal amount of attention and may depend on attentional and working memory mechanisms. The result of implicit learning is implicit knowledge in the form of abstract representations rather than verbatim or aggregate representations, and scholars have drawn similarities between implicit learning and implicit memory.

<span class="mw-page-title-main">Sleep and memory</span> Relationship between sleep and memory

The relationship between sleep and memory has been studied since at least the early 19th century. Memory, the cognitive process of storing and retrieving past experiences, learning and recognition, is a product of brain plasticity, the structural changes within synapses that create associations between stimuli. Stimuli are encoded within milliseconds; however, the long-term maintenance of memories can take additional minutes, days, or even years to fully consolidate and become a stable memory that is accessible. Therefore, the formation of a specific memory occurs rapidly, but the evolution of a memory is often an ongoing process.

<span class="mw-page-title-main">Effects of stress on memory</span> Overview of the effects of stress on memory

The effects of stress on memory include interference with a person's capacity to encode memory and the ability to retrieve information. Stimuli, like stress, improved memory when it was related to learning the subject. During times of stress, the body reacts by secreting stress hormones into the bloodstream. Stress can cause acute and chronic changes in certain brain areas which can cause long-term damage. Over-secretion of stress hormones most frequently impairs long-term delayed recall memory, but can enhance short-term, immediate recall memory. This enhancement is particularly relative in emotional memory. In particular, the hippocampus, prefrontal cortex and the amygdala are affected. One class of stress hormone responsible for negatively affecting long-term, delayed recall memory is the glucocorticoids (GCs), the most notable of which is cortisol. Glucocorticoids facilitate and impair the actions of stress in the brain memory process. Cortisol is a known biomarker for stress. Under normal circumstances, the hippocampus regulates the production of cortisol through negative feedback because it has many receptors that are sensitive to these stress hormones. However, an excess of cortisol can impair the ability of the hippocampus to both encode and recall memories. These stress hormones are also hindering the hippocampus from receiving enough energy by diverting glucose levels to surrounding muscles.

In psychology, the misattribution of memory or source misattribution is the misidentification of the origin of a memory by the person making the memory recall. Misattribution is likely to occur when individuals are unable to monitor and control the influence of their attitudes, toward their judgments, at the time of retrieval. Misattribution is divided into three components: cryptomnesia, false memories, and source confusion. It was originally noted as one of Daniel Schacter's seven sins of memory.

<span class="mw-page-title-main">Memory</span> Faculty of mind to store and retrieve data

Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered, it would be impossible for language, relationships, or personal identity to develop. Memory loss is usually described as forgetfulness or amnesia.

<span class="mw-page-title-main">Childhood memory</span> Early life experiences often memorable for life

Childhood memory refers to memories formed during childhood. Among its other roles, memory functions to guide present behaviour and to predict future outcomes. Memory in childhood is qualitatively and quantitatively different from the memories formed and retrieved in late adolescence and the adult years. Childhood memory research is relatively recent in relation to the study of other types of cognitive processes underpinning behaviour. Understanding the mechanisms by which memories in childhood are encoded and later retrieved has important implications in many areas. Research into childhood memory includes topics such as childhood memory formation and retrieval mechanisms in relation to those in adults, controversies surrounding infantile amnesia and the fact that adults have relatively poor memories of early childhood, the ways in which school environment and family environment influence memory, and the ways in which memory can be improved in childhood to improve overall cognition, performance in school, and well-being, both in childhood and in adulthood.

Eyewitness memory is a person's episodic memory for a crime or other witnessed dramatic event. Eyewitness testimony is often relied upon in the judicial system. It can also refer to an individual's memory for a face, where they are required to remember the face of their perpetrator, for example. However, the accuracy of eyewitness memories is sometimes questioned because there are many factors that can act during encoding and retrieval of the witnessed event which may adversely affect the creation and maintenance of the memory for the event. Experts have found evidence to suggest that eyewitness memory is fallible.

This relationship between autism and memory, specifically memory functions in relation to Autism Spectrum Disorder (ASD), has been an ongoing topic of research. ASD is a neurodevelopmental disorder characterised by social communication and interaction impairments, along with restricted and repetitive patterns of behavior. In this article, the word autism is used to refer to the whole range of conditions on the autism spectrum, which are not uncommon.

References

  1. Foerde, Karin; Knowlton, Barbara J.; Poldrack, Russell A. (August 2006). "Modulation of competing memory systems by distraction". Proceedings of the National Academy of Sciences. 103 (31): 11778–11783. doi:10.1073/pnas.0602659103. PMC   1544246 .
  2. Poldrack, Russell. "Probabilistic classification task" . Retrieved 26 September 2011.
  3. Poldrack, Russell A.; Foerde, Karin; Knowlton, Barbara J. (1 August 2006). "Modulation of competing memory systems by distraction". Proceedings of the National Academy of Sciences. 103 (31): 11778–11783. Bibcode:2006PNAS..10311778F. doi: 10.1073/pnas.0602659103 . PMC   1544246 . PMID   16868087.
  4. 1 2 Csábi, E., Benedek, P., Janacsek, K., Katona, G., & Nemeth, D. (2013). Sleep disorder in childhood impairs declarative but not nondeclarative forms of learning. Journal of Clinical and Experimental Neuropsychology, 35(7), 677-685. doi : 10.1080/13803395.2013.815693
  5. 1 2 Backhaus, J., Hoeckesfeld, R., Born, J., Hohagen, F., & Junghanss, K. (2007, June). Immediate as well as delayed post learning sleep but not wakefulness enhances declarative memory consolidation in children. Neurobiology of Learning and Memory. Retrieved October 19, 2014
  6. 1 2 Espin, L., Almela, M., Hidalgo, V., Villada, C., Salvador, A., & Gomez, J. (2013, May 13). Acute pre-learning stress and declarative memory: impact of sex, cortisol response and menstrual cycle phase. Hormones and Behavior, 63(5). doi : 10.1016/j.yhbeh.2013.03.013
  7. 1 2 Wilson, J., Baran, B., Schott, E., Ivry, R., & Spencer, R. (2007, June). Sleep modulates word-pair learning but not motor sequence learning in healthy older adults. Neurobiology of Aging, 33(5). doi : 10.1016/j.neurobiolaging.2011.06.029
  8. Kirkhart, M. W. (2001). The Nature of Declarative Knowledge and Nondeclarative Knowledge for Implicit and Explicit Learning. General Psychology, 128(4), 447-461.

Further reading