Degree-constrained spanning tree

Last updated

In graph theory, a degree-constrained spanning tree is a spanning tree where the maximum vertex degree is limited to a certain constant k. The degree-constrained spanning tree problem is to determine whether a particular graph has such a spanning tree for a particular k.

Contents

Formal definition

Input: n-node undirected graph G(V,E); positive integer k < n.

Question: Does G have a spanning tree in which no node has degree greater than k?

NP-completeness

This problem is NP-complete ( Garey & Johnson 1979 ). This can be shown by a reduction from the Hamiltonian path problem. It remains NP-complete even if k is fixed to a value ≥ 2. If the problem is defined as the degree must be ≤ k, the k = 2 case of degree-confined spanning tree is the Hamiltonian path problem.

Degree-constrained minimum spanning tree

On a weighted graph, a Degree-constrained minimum spanning tree (DCMST) is a degree-constrained spanning tree in which the sum of its edges has the minimum possible sum. Finding a DCMST is an NP-Hard problem. [1]

Heuristic algorithms that can solve the problem in polynomial time have been proposed, including Genetic and Ant-Based Algorithms.

Approximation Algorithm

Fürer & Raghavachari (1994) give an iterative polynomial time algorithm which, given a graph , returns a spanning tree with maximum degree no larger than , where is the minimum possible maximum degree over all spanning trees. Thus, if , such an algorithm will either return a spanning tree of maximum degree or .

Related Research Articles

Travelling salesman problem

The travelling salesman problem asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research.

Minimum spanning tree data structure, subgraph of a weighted graph

A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. That is, it is a spanning tree whose sum of edge weights is as small as possible. More generally, any edge-weighted undirected graph has a minimum spanning forest, which is a union of the minimum spanning trees for its connected components.

Graph coloring

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

Steiner tree problem

The Steiner tree problem, or minimum Steiner tree problem, named after Jakob Steiner, is an umbrella term for a class of problems in combinatorial optimization. While Steiner tree problems may be formulated in a number of settings, they all require an optimal interconnect for a given set of objects and a predefined objective function. One well-known variant, which is often used synonymously with the term Steiner tree problem, is the Steiner tree problem in graphs. Given an undirected graph with non-negative edge weights and a subset of vertices, usually referred to as terminals, the Steiner tree problem in graphs requires a tree of minimum weight that contains all terminals. Further well-known variants are the Euclidean Steiner tree problem and the rectilinear minimum Steiner tree problem.

Independent set (graph theory)

In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . The size of an independent set is the number of vertices it contains. Independent sets have also been called internally stable sets.

Vertex cover Set of vertices that includes at least one endpoint of every edge in a graph

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. The problem of finding a minimum vertex cover is a classical optimization problem in computer science and is a typical example of an NP-hard optimization problem that has an approximation algorithm. Its decision version, the vertex cover problem, was one of Karp's 21 NP-complete problems and is therefore a classical NP-complete problem in computational complexity theory. Furthermore, the vertex cover problem is fixed-parameter tractable and a central problem in parameterized complexity theory.

Edge coloring

In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.

Degree (graph theory)

In graph theory, the degree of a vertex of a graph is the number of edges that are incident to the vertex, and in a multigraph, loops are counted twice. The degree of a vertex is denoted or . The maximum degree of a graph , denoted by , and the minimum degree of a graph, denoted by , are the maximum and minimum degree of its vertices. In the multigraph on the right, the maximum degree is 5 and the minimum degree is 0.

In graph theory, a domatic partition of a graph is a partition of into disjoint sets , ,..., such that each Vi is a dominating set for G. The figure on the right shows a domatic partition of a graph; here the dominating set consists of the yellow vertices, consists of the green vertices, and consists of the blue vertices.

In the mathematical discipline of graph theory, a feedback vertex set of a graph is a set of vertices whose removal leaves a graph without cycles. In other words, each feedback vertex set contains at least one vertex of any cycle in the graph. The feedback vertex set problem is an NP-complete problem in computational complexity theory. It was among the first problems shown to be NP-complete. It has wide applications in operating systems, database systems, and VLSI chip design.

In graph theory, a connected dominating set and a maximum leaf spanning tree are two closely related structures defined on an undirected graph.

In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed.

Maximum cut

For a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between the set S and the set T is as large as possible. The problem of finding a maximum cut in a graph is known as the Max-Cut Problem.

Capacitated minimum spanning tree is a minimal cost spanning tree of a graph that has a designated root node and satisfies the capacity constraint . The capacity constraint ensures that all subtrees incident on the root node have no more than nodes. If the tree nodes have weights, then the capacity constraint may be interpreted as follows: the sum of weights in any subtree should be no greater than . The edges connecting the subgraphs to the root node are called gates. Finding the optimal solution is NP-hard.

In mathematics, the minimum k-cut, is a combinatorial optimization problem that requires finding a set of edges whose removal would partition the graph to at least k connected components. These edges are referred to as k-cut. The goal is to find the minimum-weight k-cut. This partitioning can have applications in VLSI design, data-mining, finite elements and communication in parallel computing.

In graph theory, the graph bandwidth problem is to label the n vertices vi of a graph G with distinct integers f(vi) so that the quantity is minimized . The problem may be visualized as placing the vertices of a graph at distinct integer points along the x-axis so that the length of the longest edge is minimized. Such placement is called linear graph arrangement, linear graph layout or linear graph placement.

In computer science, the minimum routing cost spanning tree of a weighted graph is a spanning tree minimizing the sum of pairwise distances between vertices in the tree. It is also called the optimum distance spanning tree, shortest total path length spanning tree, minimum total distance spanning tree, or minimum average distance spanning tree. In an unweighted graph, this is the spanning tree of minimum Wiener index. Hu (1974) writes that the problem of constructing these trees was proposed by Francesco Maffioli.

Linear arboricity

In graph theory, a branch of mathematics, the linear arboricity of an undirected graph is the smallest number of linear forests its edges can be partitioned into. Here, a linear forest is an acyclic graph with maximum degree two; that is, it is a disjoint union of path graphs. Linear arboricity is a variant of arboricity, the minimum number of forests into which the edges can be partitioned.

Graph power

In graph theory, a branch of mathematics, the kth powerGk of an undirected graph G is another graph that has the same set of vertices, but in which two vertices are adjacent when their distance in G is at most k. Powers of graphs are referred to using terminology similar to that of exponentiation of numbers: G2 is called the square of G, G3 is called the cube of G, etc.

References

  1. Bui, T. N. and Zrncic, C. M. 2006. An ant-based algorithm for finding degree-constrained minimum spanning tree. In GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 11–18, New York, NY, USA. ACM.