Deligne's conjecture on Hochschild cohomology

Last updated

In deformation theory, a branch of mathematics, Deligne's conjecture is about the operadic structure on Hochschild cochain complex. Various proofs have been suggested by Dmitry Tamarkin, [1] [2] Alexander A. Voronov, [3] James E. McClure and Jeffrey H. Smith, [4] Maxim Kontsevich and Yan Soibelman, [5] and others, after an initial input of construction of homotopy algebraic structures on the Hochschild complex. [6] [7] It is of importance in relation with string theory.

Contents

See also

References

  1. Tamarkin, Dmitry E. (1998). "Another proof of M. Kontsevich formality theorem". arXiv: math/9803025 .
  2. Hinich, Vladimir (2003). "Tamarkin's proof of Kontsevich formality theorem". Forum Math. 15 (4): 591–614. arXiv: math/0003052 . doi:10.1515/form.2003.032. S2CID   220814.
  3. Voronov, Alexander A. (2000). "Conférence Moshé Flato 1999". Conférence Moshé Flato 1999, Vol. II (Dijon). Dordrecht: Kluwer Acad. Publ. pp. 307–331. arXiv: math/9908040 . doi:10.1007/978-94-015-1276-3_23. ISBN   978-90-481-5551-4.
  4. McClure, James E.; Smith, Jeffrey H. (2002). "A solution of Deligne's Hochschild cohomology conjecture". Recent progress in homotopy theory (Baltimore, MD, 2000). Providence, RI: Amer. Math. Soc. pp. 153–193. arXiv: math/9910126 .
  5. Kontsevich, Maxim; Soibelman, Yan (2000). "Deformations of algebras over operads and the Deligne conjecture". Conférence Moshé Flato 1999, Vol. I (Dijon). Dordrecht: Kluwer Acad. Publ. pp. 255–307. arXiv: math/0001151 .
  6. Getzler, Ezra; Jones, J. D. S. (1994). "Operads, homotopy algebra and iterated integrals for double loop spaces". arXiv: hep-th/9403055 .
  7. Voronov, A. A.; Gerstenhaber, M. (1995). "Higher operations on the Hochschild complex" . Funct. Anal. Its Appl. 29: 1–5. doi:10.1007/BF01077036. S2CID   121740728.

Further reading