Dextran 1

Last updated

Dextran 1 is a hapten inhibitor that greatly reduces the risk for anaphylactic reactions when administering dextran. [1]

Mechanism

Dextran 1 is composed of a small fraction (1 kilodalton) of the entire dextran complex. This is enough to bind anti-dextran antibodies, but insufficient to result in the formation of immune complexes and resultant immune responses. Thereby, dextran 1 binds up antibodies towards dextran without causing the immune response, leaving less antibodies left to bind to the entire dextran complex, causing less risk of an immune response upon subsequent administration of dextran. [2]

Related Research Articles

<span class="mw-page-title-main">Antigen</span> Molecule triggering an immune response (antibody production) in the host

In immunology, an antigen (Ag) is any molecule, molecular structure, foreign particulate matter, or pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. Antigens can be proteins, peptides, polysaccharides, lipids, or nucleic acids.

<span class="mw-page-title-main">Immunosuppressive drug</span> Drug that inhibits activity of immune system

Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are drugs that inhibit or prevent activity of the immune system.

Haptens are small molecules that elicit an immune response only when attached to a large carrier such as a protein; the carrier may be one that also does not elicit an immune response by itself. The mechanisms of absence of immune response may vary and involve complex immunological interactions, but can include absent or insufficient co-stimulatory signals from antigen-presenting cells.

<span class="mw-page-title-main">Heparin-induced thrombocytopenia</span> Low platelet count due to heparin, associated with a risk of thrombosis

Heparin-induced thrombocytopenia (HIT) is the development of thrombocytopenia, due to the administration of various forms of heparin, an anticoagulant. HIT predisposes to thrombosis because platelets release microparticles that activate thrombin, thereby leading to thrombosis. When thrombosis is identified the condition is called heparin-induced thrombocytopenia and thrombosis (HITT). HIT is caused by the formation of abnormal antibodies that activate platelets. If someone receiving heparin develops new or worsening thrombosis, or if the platelet count falls, HIT can be confirmed with specific blood tests.

Polyclonal antibodies (pAbs) are antibodies that are secreted by different B cell lineages within the body. They are a collection of immunoglobulin molecules that react against a specific antigen, each identifying a different epitope.

An immunogen is any substance that generates B-cell (humoral/antibody) and/or T-cell (cellular) adaptive immune responses upon exposure to a host organism. Immunogens that generate antibodies are called antigens ("antibody-generating"). Immunogens that generate antibodies are directly bound by host antibodies and lead to the selective expansion of antigen-specific B-cells. Immunogens that generate T-cells are indirectly bound by host T-cells after processing and presentation by host antigen-presenting cells.

Alloimmunity is an immune response to nonself antigens from members of the same species, which are called alloantigens or isoantigens. Two major types of alloantigens are blood group antigens and histocompatibility antigens. In alloimmunity, the body creates antibodies against the alloantigens, attacking transfused blood, allotransplanted tissue, and even the fetus in some cases. Alloimmune (isoimmune) response results in graft rejection, which is manifested as deterioration or complete loss of graft function. In contrast, autoimmunity is an immune response to the self's own antigens. Alloimmunization (isoimmunization) is the process of becoming alloimmune, that is, developing the relevant antibodies for the first time.

Warm antibody autoimmune hemolytic anemia (WAIHA) is the most common form of autoimmune haemolytic anemia. About half of the cases are of unknown cause, with the other half attributable to a predisposing condition or medications being taken. Contrary to cold autoimmune hemolytic anemia which happens in cold temperature (28–31 °C), WAIHA happens at body temperature.

Autoimmune hemolytic anemia (AIHA) occurs when antibodies directed against the person's own red blood cells (RBCs) cause them to burst (lyse), leading to an insufficient number of oxygen-carrying red blood cells in the circulation. The lifetime of the RBCs is reduced from the normal 100–120 days to just a few days in serious cases. The intracellular components of the RBCs are released into the circulating blood and into tissues, leading to some of the characteristic symptoms of this condition. The antibodies are usually directed against high-incidence antigens, therefore they also commonly act on allogenic RBCs. AIHA is a relatively rare condition, with an incidence of 5–10 cases per 1 million persons per year in the warm-antibody type and 0.45 to 1.9 cases per 1 million persons per year in the cold antibody type. Autoimmune hemolysis might be a precursor of later onset systemic lupus erythematosus.

Immunogenicity is the ability of a foreign substance, such as an antigen, to provoke an immune response in the body of a human or other animal. It may be wanted or unwanted:

<span class="mw-page-title-main">Immune complex</span> Molecule formed binding antigens to antibodies

An immune complex, sometimes called an antigen-antibody complex or antigen-bound antibody, is a molecule formed from the binding of multiple antigens to antibodies. The bound antigen and antibody act as a unitary object, effectively an antigen of its own with a specific epitope. After an antigen-antibody reaction, the immune complexes can be subject to any of a number of responses, including complement deposition, opsonization, phagocytosis, or processing by proteases. Red blood cells carrying CR1-receptors on their surface may bind C3b-coated immune complexes and transport them to phagocytes, mostly in liver and spleen, and return to the general circulation.

Immunotoxicology is the study of the toxicity of foreign substances called xenobiotics and their effects on the immune system. Some toxic agents that are known to alter the immune system include: industrial chemicals, heavy metals, agrochemicals, pharmaceuticals, drugs, ultraviolet radiation, air pollutants and some biological materials. The effects of these immunotoxic substances have been shown to alter both the innate and adaptive parts of the immune system. Consequences of xenobiotics affect the organ initially in contact. Some commonly seen problems that arise as a result of contact with immunotoxic substances are: immunosuppression, hypersensitivity, and autoimmunity. The toxin-induced immune dysfunction may also increase susceptibility to cancer.

NicVAX is an experimental conjugate vaccine intended to reduce or eliminate physical dependence to nicotine. According to the U.S. National Institute of Drug Abuse, NicVAX can potentially be used to inoculate against nicotine addiction. This proprietary vaccine is being developed by Nabi Biopharmaceuticals of Rockville, MD. with the support from the U.S. National Institute on Drug Abuse. NicVAX consists of the hapten 3'-aminomethylnicotine which has been conjugated (attached) to Pseudomonas aeruginosa exotoxin A.

Idiosyncratic drug reactions, also known as type B reactions, are drug reactions that occur rarely and unpredictably amongst the population. This is not to be mistaken with idiopathic, which implies that the cause is not known. They frequently occur with exposure to new drugs, as they have not been fully tested and the full range of possible side-effects have not been discovered; they may also be listed as an adverse drug reaction with a drug, but are extremely rare. Some patients have multiple-drug intolerance. Patients who have multiple idiopathic effects that are nonspecific are more likely to have anxiety and depression. Idiosyncratic drug reactions appear to not be concentration dependent. A minimal amount of drug will cause an immune response, but it is suspected that at a low enough concentration, a drug will be less likely to initiate an immune response.

Anti-idiotypic vaccines consist of antibodies that have three-dimensional immunogenic regions, termed idiotopes, that consist of protein sequences that bind to cell receptors. Idiotopes are aggregated into idiotypes specific to their target antigen. An example of an anti-idiotype antibody is Racotumomab.

Abatacept, sold under the brand name Orencia, is a medication used to treat autoimmune diseases like rheumatoid arthritis, by interfering with the immune activity of T cells. It is a modified antibody.

<span class="mw-page-title-main">Keyhole limpet hemocyanin</span>

Keyhole limpet hemocyanin (KLH) is a large, multisubunit, oxygen-carrying, metalloprotein that is found in the hemolymph of the giant keyhole limpet, Megathura crenulata, a species of keyhole limpet that lives off the coast of California, from Monterey Bay to Isla Asuncion off Baja California.

Drug-induced autoimmune hemolytic anemia is a form of hemolytic anemia.

Severe cutaneous adverse reactions are a group of potentially lethal adverse drug reactions that involve the skin and mucous membranes of various body openings such as the eyes, ears, and inside the nose, mouth, and lips. In more severe cases, SCARs also involves serious damage to internal organs. SCARs includes five syndromes: Drug reaction with eosinophilia and systemic symptoms ; Stevens–Johnson syndrome (SJS); Toxic epidermal necrolysis (TEN), Stevens-Johnson/toxic epidermal necrolysis overlap syndrome (SJS/TEN); and Acute generalized exanthematous pustulosis (AGEP). The five disorders have similar pathophysiologies, i.e. disease-causing mechanisms, for which new strategies are in use or development to identify individuals predisposed to develop the SCARs-inducing effects of specific drugs and thereby avoid treatment with them. Maculopapular rash (MPR) is a less-well defined and benign form of drug-induced adverse skin reactions; while not classified in the SCARs group, it shares with SCARS a similar pathophysiology and is caused by some of the same drugs which cause SCARs.

The p-i concept refers to the pharmacological interaction of drugs with immune receptors. It explains a form of drug hypersensitivity, namely T cell stimulation, which can lead to various acute inflammatory manifestations such as exanthems, eosinophilia and systemic symptoms, Stevens–Johnson syndrome, toxic epidermal nercrolysis, and complications upon withdrawing the drug.

References

  1. Ljungstrom, K.; Willman, B.; Hedin, H. (1993). "Hapten inhibition of dextran anaphylaxis. Nine years of post-marketing surveillance of dextran 1". Annales Françaises d'Anesthésie et de Réanimation. 12 (2): 219–22. doi:10.1016/S0750-7658(05)81033-0. PMID   7690207.
  2. Promiten, drug information from the Swedish official drug catalog Last updated: 2005-02-17