Dichotomous thinking

Last updated

In statistics, dichotomous thinking or binary thinking is the process of seeing a discontinuity in the possible values that a p-value can take during null hypothesis significance testing: it is either above the significance threshold (usually 0.05) or below. When applying dichotomous thinking, a first p-value of 0.0499 will be interpreted the same as a p-value of 0.0001 (the null hypothesis is rejected) while a second p-value of 0.0501 will be interpreted the same as a p-value of 0.7 (the null hypothesis is accepted). The fact that first and second p-values are mathematically very close is thus completely disregarded and values of p are not considered as continuous but are interpreted dichotomously with respect to the significance threshold. A common measure of dichotomous thinking is the cliff effect. [1] A reason to avoid dichotomous thinking is that p-values and other statistics naturally change from study to study due to random variation alone [2] [3] ; decisions about refutation or support of a scientific hypothesis based on a result from a single study are therefore not reliable [4] .

Dichotomous thinking is very often associated with p-value reading [5] [6] [7] but it can also happen with other statistical tools such as interval estimates. [1] [8]

See also

Related Research Articles

Biostatistics are the development and application of statistical methods to a wide range of topics in biology. It encompasses the design of biological experiments, the collection and analysis of data from those experiments and the interpretation of the results.

Statistics Study of the collection, analysis, interpretation, and presentation of data

Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.

A statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis.

In statistical hypothesis testing, a result has statistical significance when it is very unlikely to have occurred given the null hypothesis. More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. The result is statistically significant, by the standards of the study, when . The significance level for a study is chosen before data collection, and is typically set to 5% or much lower—depending on the field of study.

In inferential statistics, the null hypothesis is that two possibilities are the same. The null hypothesis is that the observed difference is due to chance alone. Using statistical tests, it is possible to calculate the likelihood that the null hypothesis is true.

Confidence interval Range of estimates for an unknown parameter

In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated confidence level; the 95% confidence level is most common, but other levels, such as 90% or 99%, are sometimes used. The confidence level represents the long-run proportion of correspondingly CI that end up containing the true value of the parameter. For example, out of all intervals computed at the 95% level, 95% of them should contain the parameter's true value.

In statistics, the Mann–Whitney U test is a nonparametric test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X.

In null-hypothesis significance testing, the p-value is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis. Reporting p-values of statistical tests is common practice in academic publications of many quantitative fields. Since the precise meaning of p-value is hard to grasp, misuse is widespread and has been a major topic in metascience.

In statistical hypothesis testing, the alternative hypothesis is one of the proposed proposition in the hypothesis test. In general the goal of hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of alternative hypothesis instead of the exclusive proposition in the test. It is usually consistent with the research hypothesis because it is constructed from literature review, previous studies, etc. However, the research hypothesis is sometimes consistent with the null hypothesis.

The Shapiro–Wilk test is a test of normality in frequentist statistics. It was published in 1965 by Samuel Sanford Shapiro and Martin Wilk.

In statistics, McNemar's test is a statistical test used on paired nominal data. It is applied to 2 × 2 contingency tables with a dichotomous trait, with matched pairs of subjects, to determine whether the row and column marginal frequencies are equal. It is named after Quinn McNemar, who introduced it in 1947. An application of the test in genetics is the transmission disequilibrium test for detecting linkage disequilibrium.

In statistical hypothesis testing, a type I error is the mistaken rejection of an actually true null hypothesis, while a type II error is the failure to reject a null hypothesis that is actually false. Much of statistical theory revolves around the minimization of one or both of these errors, though the complete elimination of either is a statistical impossibility if the outcome is not determined by a known, observable causal process. By selecting a low threshold (cut-off) value and modifying the alpha (α) level, the quality of the hypothesis test can be increased. The knowledge of type I errors and type II errors is widely used in medical science, biometrics and computer science.

In statistical hypothesis testing, p-rep or prep has been proposed as a statistical alternative to the classic p-value. Whereas a p-value is the probability of obtaining a result under the null hypothesis, p-rep purports to compute the probability of replicating an effect. The derivation of p-rep contained significant mathematical errors.

In statistics, and especially in the statistical analysis of psychological data, the counternull is a statistic used to aid the understanding and presentation of research results. It revolves around the effect size, which is the mean magnitude of some effect divided by the standard deviation.

In science, a null result is a result without the expected content: that is, the proposed result is absent. It is an experimental outcome which does not show an otherwise expected effect. This does not imply a result of zero or nothing, simply a result that does not support the hypothesis.

Estimation statistics, or simply estimation, is a data analysis framework that uses a combination of effect sizes, confidence intervals, precision planning, and meta-analysis to plan experiments, analyze data and interpret results. It complements hypothesis testing approaches such as null hypothesis significance testing (NHST), by going beyond the question is an effect present or not, and provides information about how large an effect is. Estimation statistics is sometimes referred to as the new statistics.

A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition, while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test, in contrast to the two kinds of correct result. They are also known in medicine as a false positivediagnosis, and in statistical classification as a false positiveerror.

Replication crisis Ongoing methodological crisis in science stemming from failure to replicate many studies

The replication crisis is an ongoing methodological crisis in which it has been found that the results of many scientific studies are difficult or impossible to reproduce. Because the reproducibility of empirical results is an essential part of the scientific method, such failures undermine the credibility of theories building on them and potentially call into question substantial parts of scientific knowledge.

Misuse of p-values is common in scientific research and scientific education. p-values are often used or interpreted incorrectly; the American Statistical Association states that p-values can indicate how incompatible the data are with a specified statistical model. From a Neyman–Pearson hypothesis testing approach to statistical inferences, the data obtained by comparing the p-value to a significance level will yield one of two results: either the null hypothesis is rejected, or the null hypothesis cannot be rejected at that significance level. From a Fisherian statistical testing approach to statistical inferences, a low p-value means either that the null hypothesis is true and a highly improbable event has occurred or that the null hypothesis is false.

Valentin Amrhein German / Swiss professor of zoology (born 1971)

Valentin Amrhein is a German-Swiss professor of zoology at the University of Basel and science journalist. Together with Sander Greenland and others, he is a critic of significance thresholds in science and he draws attention to misunderstandings of p-values. He is author of a comment in the journal Nature on statistical significance that had the highest online attention score of all research outputs ever screened by Altmetric.

References

  1. 1 2 Lai, Jerry (2019). "DICHOTOMOUS THINKING: A PROBLEM BEYOND NHST" (PDF). ICOTS8. Retrieved 23 October 2018.
  2. Cumming, Geoff (2014). "The New Statistics: Why and How". Psychological Science. 25 (1): 7–29. doi:10.1177/0956797613504966. ISSN   0956-7976.
  3. Berner, Daniel; Amrhein, Valentin (2022). "Why and how we should join the shift from significance testing to estimation". Journal of Evolutionary Biology: jeb.14009. doi:10.1111/jeb.14009. ISSN   1010-061X.
  4. Amrhein, Valentin; Greenland, Sander; McShane, Blake (2019). "Scientists rise up against statistical significance". Nature. 567 (7748): 305–307. doi:10.1038/d41586-019-00857-9.
  5. Rosenthal, Robert; Gaito, John (1963). "The Interpretation of Levels of Significance by Psychological Researchers". The Journal of Psychology. Informa UK Limited. 55 (1): 33–38. doi:10.1080/00223980.1963.9916596. ISSN   0022-3980.
  6. Nelson, Nanette; Rosenthal, Robert; Rosnow, Ralph L. (1986). "Interpretation of significance levels and effect sizes by psychological researchers". American Psychologist. American Psychological Association (APA). 41 (11): 1299–1301. doi:10.1037/0003-066x.41.11.1299. ISSN   1935-990X.
  7. Besançon, Lonni; Dragicevic, Pierre (2019). The Continued Prevalence of Dichotomous Inferences at CHI. New York, New York, USA: ACM Press. doi:10.1145/3290607.3310432. ISBN   978-1-4503-5971-9.
  8. Helske, Jouni; Helske, Satu; Cooper, Matthew; Ynnerman, Anders; Besancon, Lonni (2021). "Can Visualization Alleviate Dichotomous Thinking? Effects of Visual Representations on the Cliff Effect". IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 27 (8): 3397–3409. arXiv: 2002.07671 . doi:10.1109/tvcg.2021.3073466. ISSN   1077-2626.