Digital Access to a Sky Century @ Harvard

Last updated
DASCH
Commercial?No
Location Cambridge, Massachusetts, United States
Owner Center for Astrophysics | Harvard & Smithsonian
FounderJonathan E. Grindlay, principal investigator
Established2001(23 years ago) (2001)
Funding National Science Foundation
StatusActive
Website dasch.rc.fas.harvard.edu

The Digital Access to a Sky Century @ Harvard (DASCH) is a project to preserve and digitize images recorded on astronomical photographic plates created before astronomy became dominated by digital imaging. It is a major project of the Center for Astrophysics | Harvard & Smithsonian. Over 500,000 glass plates held by the Harvard College Observatory are to be digitized. [1] The digital images will contribute to time domain astronomy, providing over a hundred years of data that may be compared to current observations.

Contents

Portion of Plate b41215 of Halley's comet taken on April 21, 1910 from Arequipa, Peru with the 8-inch Bache Doublet, Voigtlander. The exposure was 30 minutes centered on 23h41m29s R.A. and +07d21m09s Declination. Halley's comet 1910.jpg
Portion of Plate b41215 of Halley's comet taken on April 21, 1910 from Arequipa, Peru with the 8-inch Bache Doublet, Voigtlander. The exposure was 30 minutes centered on 23h41m29s R.A. and +07d21m09s Declination.

From 1885 until 1992, the Harvard College Observatory repeatedly photographed the night sky using observatories in both the northern and southern hemispheres. Over half a million glass photographic plates are stored in the observatory archives providing a unique resource to astronomers. The Harvard collection is over three times the size of the next largest collection of astronomical photographic plates and is almost a quarter of all known photographic images of the sky on glass plates. Those plates were seldom used after digital imaging became the standard near the end of the twentieth century. [2] The scope of the Harvard plate collection is unique in that it covers the entire sky for a very long period of time.

Goals

The project web site states that the goals of DASCH are to

enable new Time Domain Astronomy (TDA) science, including:

History

Digitizing the Harvard College Observatory's astronomical plates archive was first considered in the 1980s by Jonathan E. Grindlay, a professor of astronomy at Harvard. Grindlay encouraged Alison Doane, then curator of the archive, to explore digitizing the collection with a commercial image scanner. Working with Jessica Mink, an archivist of the Center for Astrophysics | Harvard & Smithsonian, Grindlay and Doane determined that a commercial scanner could produce suitable digital images but also found that such machines were too slow. [4] Working full-time, it would have taken over 50 years to digitize the plates in the Harvard archive with commercial scanners. [5]

Doane presented a talk about the problem at a meeting of the Amateur Telescope Makers of Boston whose clubhouse is located on the grounds of MIT's Haystack Observatory. Bob Simcoe, a club member and retired engineer, volunteered to help design a machine suitable for the task. The machine needed to position and record the stellar images on the plates to within half a micron and account for different emulsions, plate thicknesses and densities, exposure times, processing methods and so on. Software was developed by Mink, Edward Los, another volunteer from the club, and Silas Laycock, a researcher. Thanks to a grant from the National Science Foundation and donations of time and material, creation of the scanner began in 2004. The scanner was completed and tested in 2006. Over 500 plates were imaged before the project ran out of money in July 2007. [5]

For the digital images to be useful for research, the associated metadata also needs to be digitalized. That data describes what part of the sky and what objects were recorded on each plate along with date, time, telescope, and other pertinent information. The metadata is recorded in about 1,200 logbooks and on the card catalog of the collection. In addition, each plate is stored in a paper jacket that includes related information and often scientifically and historically important notes left by previous researchers, including notable astronomers such as Henrietta Swan Leavitt and Annie Jump Cannon. George Champine, another volunteer from the Amateur Telescope Makers of Boston, photographed the logbooks. The paper jacket for each plate is photographed as each plate is cleaned and imaged. [5]

Progress

Plate imaging

The first plate images were created by Harvard Observatory staff members in the winter of 2001–2002 using commercial scanners. A larger test that included imaging 100 plates was conducted in the summer of 2002. Those tests indicated that commercially available scanners were too slow for digitizing the Harvard plate collection and motivated the development of a custom-built scanner. The test images are available on-line. [6] The custom-built high-speed scanner was completed and tested in 2006. [4]

Improvement of the scanner and associated software continues. A failure of a single part in the plate loader led to a breakdown of the scanner in August 2014. A new plate loader control system was designed and built by Bob Simcoe allowing scanning to resume in November 2014. [7]

As of November 2014, over 80,000 plates have been scanned and the data released on the DASCH web site, approximately 6.5 percent of the plate collection. The 80,000th plate was scanned on November 13, 2014. [7]

Metadata transcription

Most of the metadata for the plate collection is contained in 663 bound volumes and about 500 looseleaf logbooks. Photographs of all of the logbook pages are available on the DASCH website. The effort to digitize this information began at Harvard. Some was done in India. The effort later moved to the American Museum of Natural History where volunteers worked under the supervision of Dr Michael Shara, Curator of the Department of Astrophysics and Holly Klug, Department. of Volunteer Services. [8]

In August 2014, the transcription of the Harvard plate logbooks was taken over by the Smithsonian Transcription Center, a new program to recruit volunteers to transcribe historical documents. This citizen science project is ongoing with a goal of completing all of the transcription before 2017. [2]

Other activities

Special projects

The DASCH will not generally accept special requests for scanning a particular part of the sky from the collection so that the digitization progresses efficiently. The DASCH team did accommodate two special requests to image plates that were not part of the Harvard collection "for scientifically compelling reasons". [7]

The New Horizons team requested images of Pluto in order to improve the dwarf planet's ephemeris that was needed to plan precise adjustments to the spacecraft's trajectory. DASCH scanned 843 plates showing Pluto that were taken by the 40-inch telescope at Lowell Observatory from 1930 to 1951. [7]

Forty-two plates of the Cassiopeia A supernova remnant taken by the Hale Telescope at the Palomar Observatory from 1951 to 1989 were imaged to support a study comparing x-ray and visual emissions. [7] As of November 2014, the study has not been published in a peer reviewed journal. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Astrophotography</span> Imaging of astronomical objects

Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object was taken in 1840, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, modern astrophotography has the ability to image objects outside of the visible spectrum of the human eye such as dim stars, nebulae, and galaxies. This is accomplished through long time exposure as both film and digital cameras can accumulate and sum photons over long periods of time or using specialized optical filters which limit the photons to a certain wavelength.

<span class="mw-page-title-main">Photographic plate</span> Target medium in photography

Photographic plates preceded photographic film as a capture medium in photography. The light-sensitive emulsion of silver salts was coated on a glass plate, typically thinner than common window glass. They were heavily used in the late 19th century and declined through the 20th. They were still used in some communities until the late 20th century.

<span class="mw-page-title-main">Adler Planetarium</span> Astronomical museum in Chicago, Illinois

The Adler Planetarium is a public museum in Chicago, Illinois, dedicated to astronomy and astrophysics. It was founded in 1930 by local businessman Max Adler. Located on the northeastern tip of Northerly Island on Lake Michigan, the Adler Planetarium was the first planetarium in the United States. It is part of Chicago's Museum Campus, which includes the John G. Shedd Aquarium and The Field Museum. The Planetarium's mission is to inspire exploration and understanding of the universe.

<span class="mw-page-title-main">Williamina Fleming</span> Scottish astronomer (1857–1911)

Williamina Paton Stevens Fleming was a Scottish astronomer. She was a single mother hired by the director of the Harvard College Observatory to help in the photographic classification of stellar spectra. She helped develop a common designation system for stars and cataloged more than ten thousand stars, 59 gaseous nebulae, over 310 variable stars, and 10 novae and other astronomical phenomena. Among several career achievements that advanced astronomy, Fleming is noted for her discovery of the Horsehead Nebula in 1888.

<span class="mw-page-title-main">Palomar Observatory</span> Astronomical observatory in Southern California

Palomar Observatory is an astronomical research observatory in the Palomar Mountains of San Diego County, California, United States. It is owned and operated by the California Institute of Technology (Caltech). Research time at the observatory is granted to Caltech and its research partners, which include the Jet Propulsion Laboratory (JPL), Yale University, and the National Astronomical Observatories of China.

<span class="mw-page-title-main">Harvard College Observatory</span> Astronomical observatory in Cambridge, Massachusetts, United States

The Harvard College Observatory (HCO) is an institution managing a complex of buildings and multiple instruments used for astronomical research by the Harvard University Department of Astronomy. It is located in Cambridge, Massachusetts, United States, and was founded in 1839. With the Smithsonian Astrophysical Observatory, it forms part of the Center for Astrophysics | Harvard & Smithsonian.

Boyden Observatory is an astronomical research observatory and science education centre located in Maselspoort, 20 kilometres (12 mi) north-east of the city of Bloemfontein in Free State, South Africa. The observatory is managed by the Physics Department of the University of the Free State (UFS). The Friends of Boyden assist the observatory as a public support group, organising open evenings and protecting its public interest. Boyden also makes use of members of ASSA Bloemfontein Centre, the amateur astronomy club of the city, for presenters and telescope assistants.

The National Geographic Society – Palomar Observatory Sky Survey was a major astronomical survey, that took almost 2,000 photographic plates of the night sky. It was conducted at Palomar Observatory, California, United States, and completed by the end of 1958.

The Digitized Sky Survey (DSS) is a digitized version of several photographic astronomical surveys of the night sky, produced by the Space Telescope Science Institute between 1983 and 2006.

<span class="mw-page-title-main">Samuel Oschin telescope</span>

The Samuel Oschin telescope, also called the Oschin Schmidt, is a 48-inch-aperture (1.22 m) Schmidt camera at the Palomar Observatory in northern San Diego County, California. It consists of a 49.75 inches (1.264 m) Schmidt corrector plate and a 72 inches (1.8 m) (f/2.5) mirror. The instrument is strictly a camera; there is no provision for an eyepiece to look through it. It originally used 10 inches (25 cm) and 14 inches (36 cm) glass photographic plates. Since the focal plane is curved, these plates had to be preformed in a special jig before being loaded into the camera.

<span class="mw-page-title-main">Harvard–Smithsonian Center for Astrophysics</span> Astronomical observatory in Massachusetts, US

The Center for Astrophysics | Harvard & Smithsonian (CfA), previously known as the Harvard–Smithsonian Center for Astrophysics, is an astrophysics research institute jointly operated by the Harvard College Observatory and Smithsonian Astrophysical Observatory. Founded in 1973 and headquartered in Cambridge, Massachusetts, United States, the CfA leads a broad program of research in astronomy, astrophysics, Earth and space sciences, as well as science education. The CfA either leads or participates in the development and operations of more than fifteen ground- and space-based astronomical research observatories across the electromagnetic spectrum, including the forthcoming Giant Magellan Telescope (GMT) and the Chandra X-ray Observatory, one of NASA's Great Observatories.

<span class="mw-page-title-main">Institute of Astronomy, Cambridge</span> Astronomy department of the university of Cambridge

The Institute of Astronomy (IoA) is the largest of the three astronomy departments in the University of Cambridge, and one of the largest astronomy sites in the United Kingdom. Around 180 academics, postdocs, visitors and assistant staff work at the department.

The UK Schmidt Telescope (UKST) is a 1.24 metre Schmidt telescope operated by the Australian Astronomical Observatory ; it is located adjacent to the 3.9 metre Anglo-Australian Telescope at Siding Spring Observatory, Australia. It is very similar to the Samuel Oschin telescope in California. The telescope can detect objects down to magnitude 21 after an hour of exposure on photographic plates.

<span class="mw-page-title-main">Astronomical survey</span> General map or image of a region of the sky with no specific observational target

An astronomical survey is a general map or image of a region of the sky that lacks a specific observational target. Alternatively, an astronomical survey may comprise a set of images, spectra, or other observations of objects that share a common type or feature. Surveys are often restricted to one band of the electromagnetic spectrum due to instrumental limitations, although multiwavelength surveys can be made by using multiple detectors, each sensitive to a different bandwidth.

<span class="mw-page-title-main">Vainu Bappu Observatory</span> Observatory

The Vainu Bappu Observatory is an astronomical observatory owned and operated by the Indian Institute of Astrophysics. It is located at Kavalur in the Javadi Hills, near Vaniyambadi in Tirupathur district in the Indian state of Tamil Nadu. It is 200 km south-west of Chennai and 175 km south-east of Bangalore.

<span class="mw-page-title-main">Yale University Observatory</span> Observatory

The Yale University Observatory, also known as the Leitner Family Observatory and Planetarium, is an astronomical observatory owned and operated by Yale University, and maintained for student use. It is located in Farnham Memorial Gardens near the corner of Edwards and Prospect Streets, New Haven, Connecticut.

<span class="mw-page-title-main">Time-domain astronomy</span> Study of how astronomical objects change with time

Time-domain astronomy is the study of how astronomical objects change with time. Though the study may be said to begin with Galileo's Letters on Sunspots, the term now refers especially to variable objects beyond the Solar System. Changes over time may be due to movements or changes in the object itself. Common targets included are supernovae, pulsating stars, novas, flare stars, blazars and active galactic nuclei. Visible light time domain studies include OGLE, HAT-South, PanSTARRS, SkyMapper, ASAS, WASP, CRTS, GOTO and in a near future the LSST at the Vera C. Rubin Observatory.

Thomas M. Dame is Director of the Radio Telescope Data Center at the Center for Astrophysics | Harvard & Smithsonian, a Senior Radio Astronomer at the Smithsonian Astrophysical Observatory, and a Lecturer on Astronomy at Harvard University. He is best known for mapping the Milky Way galaxy in Carbon Monoxide and for the discovery of both the Far 3 kpc Arm and the Outer Scutum–Centaurus Arm of the Milky Way.

The Smithsonian Transcription Center is a crowdsourcing transcription project that aims to assist with the preservation and digitization of handwritten material in the Smithsonian Institution. The Transcription Center cites five reasons why transcription matters: discovery, humanities research, scientific research, education, and readability. Collections available for transcription include such documents as scientist field notebooks, artist diaries, astronomy logbooks, botany and bumblebee specimens and certified currency proofs.

References

  1. Young, Monica (May 14, 2013). "Digitizing Harvard's Century of Sky". Sky and Telescope . Retrieved 7 December 2014.
  2. 1 2 "Volunteers needed to preserve astronomical history and promote discovery". Smithsonian Research Online. Smithsonian Institution. 11 September 2014. Retrieved 7 November 2014.
  3. Los, Edward J. "DASCH". Digital Access to a Sky Century @ Harvard. Harvard University . Retrieved 6 November 2014.
  4. 1 2 Simcoe, R. J.; Grindlay, J. E.; Los, E. J.; Doane, A.; Laycock, S. G.; Mink, D. J.; Champine, G.; Sliski, A. (12 October 2006). Tescher, Andrew G (ed.). "An ultrahigh-speed digitizer for the Harvard College Observatory astronomical plates". Proceedings of the SPIE. Applications of Digital Image Processing XXIX. 6312. SPIE: 631217. arXiv: astro-ph/0610351 . Bibcode:2006SPIE.6312E..17S. doi:10.1117/12.681365. S2CID   119467270.
  5. 1 2 3 Johnson, George (July 10, 2007). "A Trip Back in Time and Space". The New York Times . Retrieved 6 November 2014.
  6. Mink, Jessica. "Testing Scanners". Scanning the Harvard University Plate Stacks. Telescope Data Center, Center for Astrophysics | Harvard & Smithsonian. Retrieved 7 November 2014.
  7. 1 2 3 4 5 Los, Edward J. "Project Status". Digital Access to a Sky Century @ Harvard. Harvard University. Retrieved 6 December 2014.
  8. "Database Overview". Digital Access to a Sky Century @ Harvard. Retrieved 7 November 2014.
  9. Patnaude, Daniel J.; Fesen, Robert A. "A Comparison of X-ray and Optical Emission in Cassiopeia A" . Retrieved 7 November 2014.