Digital variance angiography

Last updated
Comparison of kinetic images(KIN) and DSA images in abdominal (top row) and iliac regions (bottom row). Fig dva wiki.jpg
Comparison of kinetic images(KIN) and DSA images in abdominal (top row) and iliac regions (bottom row).

Digital variance angiography (DVA) is a novel image processing method based on kinetic imaging, which allows the visualization of motion on image sequences generated by penetrating radiations. DVA is a specific form of kinetic imaging: it requires angiographic image series, which are created by X-ray or fluoroscopic imaging and by the administration of contrast media during various medical procedures. The resulting single DVA image visualizes the path of contrast agent with relatively low background noise. [1]

Contents

Between 2017 and 2019, two clinical studies have been performed to investigate the clinical usability of DVA and these studies have found that it has the potential to be used for low-dose radiographic imaging and carbon-dioxide angiography in the future. [1] [2]

DVA is currently under development by Kinetic Health Ltd. and Semmelweis University (Budapest, Hungary).

Lower extremity DSA comparison study

DSA (left) and DVA (KIN, right) image pairs, which were created by administering iodinated contrast agent. From top to bottom: abdominal, iliac, femoral, popliteal and crural regions. Fig201.png
DSA (left) and DVA (KIN, right) image pairs, which were created by administering iodinated contrast agent. From top to bottom: abdominal, iliac, femoral, popliteal and crural regions.

In 2018 Gyánó M. et al. compared the quality of DVA and DSA (digital subtraction angiography) images in a prospective observational crossover study, which involved the analysis of 232 image pairs of 42 patients undergoing lower limb x-ray angiography (performed by using iodinated contrast agent) between February and June 2017. Methods included the measurement of SNR (signal-to-noise ratio) and visual quality comparison. [1]

Signal-to-noise ratio

Although other factors like spatial resolution, sharpness, and object size may contribute to image quality and object perceptibility, noise places a fundamental limitation on the ability to recognize structures on low-contrast images and that was the main reason why the SNR measurement method was chosen. The results showed 2-3 times higher SNR values in the case of DVA images compared to traditionally used DSA images, which has indicated that DVA has the potential to improve the ability to view blood vessels, since a higher SNR value indicates lower noise levels.

Visual comparison

Qualitative comparison has been performed by three vascular surgeons and three interventional radiologists, with about 17 years of experience on the average. In an online visual questionnaire, which showed DVA and DSA image pairs of the same anatomical regions, raters were asked to choose the image which they found to be more useful for making the diagnosis. Overall, the raters judged the kinetic images better in 69% of all images. Regarding different anatomical regions, the raters agreed that the DVA was significantly better for talocrural and popliteal regions.

Conclusion

Since the SNR is proportional to radiation dose, the authors have concluded that the higher SNR values indicate that the DVA method has the ability to generate angiographic images which have the same quality as the currently used DSA, but the dose of the administered radiation and/or contrast media could be lowered to achieve the same vessel visibility.

Carbon-dioxide angiography

DSA (left) and DVA (right) carbon-dioxide angiography image pairs. Top row: abdominal, iliac and femoral region. Bottom row: Popliteal,crural and ankle regions. Figure6-SiemensMontage-2b.tif
DSA (left) and DVA (right) carbon-dioxide angiography image pairs. Top row: abdominal, iliac and femoral region. Bottom row: Popliteal,crural and ankle regions.

In 2019 Óriás V. et al. published the results of a clinical study, which investigated the feasibility of digital variance angiography (DVA) in lower extremity carbon-dioxide angiography and compared the quantitative and qualitative performance of the new image processing technique to that of the current reference standard digital subtraction angiography (DSA). [2]

Materials and methods

The study enrolled 24 patients undergoing lower limb carbon-dioxide angiography between December 2017 and April 2018 at two clinical centres in Hungary. For comparison, the signal-to-noise ratio (SNR) of DSA and DVA images were calculated and the visual quality of DSA and DVA images were also compared by independent clinical specialists using an online questionnaire.

Results

The ratio of SNR DVA /SNR DSA was calculated and the median values for the two centres were 3.53 and 4.52. During the visual evaluation 120 DSA and DVA image pairs were compared and it was judged that the DVA provided higher quality images in both centres, in 78% and 90% of comparisons. DVA images also received consistently higher individual rating than DSA images, regardless of the research site and anatomical region.

Conclusion

As the authors conclude, these results have shown that in lower limb carbon-dioxide angiography DVA, regardless of the image acquisition instruments and protocols, produces higher signal-to-noise ratio and significantly better image quality than DSA, therefore this new image processing method might help the widespread use of carbon-dioxide as a safer contrast agent in clinical practice.

Ongoing research projects

Several oral presentations and posters have been presented at CIRSE 2019 conference about ongoing research projects, including the study of possible application of DVA during prostatic artery embolization and the development of new algorithms for DVA to further improve image quality, which would create a 'quality reserve' and allow the reduction of radiation and contrast media dose. [3]

See also

Related Research Articles

CT scan Medical imaging procedure using X-rays to produce cross-sectional images

A computed tomography scan is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or radiology technologists.

Radiography Imaging technique using ionizing and non-ionizing radiation

Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object. Applications of radiography include medical radiography and industrial radiography. Similar techniques are used in airport security. To create an image in conventional radiography, a beam of X-rays is produced by an X-ray generator and is projected toward the object. A certain amount of the X-rays or other radiation is absorbed by the object, dependent on the object's density and structural composition. The X-rays that pass through the object are captured behind the object by a detector. The generation of flat two dimensional images by this technique is called projectional radiography. In computed tomography an X-ray source and its associated detectors rotate around the subject which itself moves through the conical X-ray beam produced. Any given point within the subject is crossed from many directions by many different beams at different times. Information regarding attenuation of these beams is collated and subjected to computation to generate two dimensional images in three planes which can be further processed to produce a three dimensional image.

Fluoroscopy Production of an image when X-rays strike a fluorescent screen

Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope allows a physician to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched. This is useful for both diagnosis and therapy and occurs in general radiology, interventional radiology, and image-guided surgery.

Angiography Medical imaging technique

Angiography or arteriography is a medical imaging technique used to visualize the inside, or lumen, of blood vessels and organs of the body, with particular interest in the arteries, veins, and the heart chambers. Modern angiography is performed by injecting a radio-opaque contrast agent into the blood vessel and imaging using X-ray based techniques such as fluoroscopy.

Coronary catheterization Radiography of heart and blood vessels

A coronary catheterization is a minimally invasive procedure to access the coronary circulation and blood filled chambers of the heart using a catheter. It is performed for both diagnostic and interventional (treatment) purposes.

Cerebral angiography Angiography that produces images of blood vessels in and around the brain

Cerebral angiography is a form of angiography which provides images of blood vessels in and around the brain, thereby allowing detection of abnormalities such as arteriovenous malformations and aneurysms. It was pioneered in 1927 by the Portuguese neurologist Egas Moniz at the University of Lisbon, who also helped develop thorotrast for use in the procedure.

Magnetic resonance angiography Group of techniques based on magnetic resonance imaging (MRI) to image blood vessels.

Magnetic resonance angiography (MRA) is a group of techniques based on magnetic resonance imaging (MRI) to image blood vessels. Magnetic resonance angiography is used to generate images of arteries in order to evaluate them for stenosis, occlusions, aneurysms or other abnormalities. MRA is often used to evaluate the arteries of the neck and brain, the thoracic and abdominal aorta, the renal arteries, and the legs.

Digital subtraction angiography Method for delineating blood vessels using contrast medium

Digital subtraction angiography (DSA) is a fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. Images are produced using contrast medium by subtracting a "pre-contrast image" or mask from subsequent images, once the contrast medium has been introduced into a structure. Hence the term "digital subtraction angiography. Subtraction angiography was first described in 1935 and in English sources in 1962 as a manual technique. Digital technology made DSA practical starting in the 1970s.

CT pulmonary angiogram

A CT pulmonary angiogram (CTPA) is a medical diagnostic test that employs computed tomography (CT) angiography to obtain an image of the pulmonary arteries. Its main use is to diagnose pulmonary embolism (PE). It is a preferred choice of imaging in the diagnosis of PE due to its minimally invasive nature for the patient, whose only requirement for the scan is an intravenous line.

Projectional radiography Formation of 2D images using X-rays

Projectional radiography, also known as conventional radiography, is a form of radiography and medical imaging that produces two-dimensional images by x-ray radiation. The image acquisition is generally performed by radiographers, and the images are often examined by radiologists. Both the procedure and any resultant images are often simply called "X-ray". Plain radiography or roentgenography generally refers to projectional radiography. Plain radiography can also refer to radiography without a radiocontrast agent or radiography that generates single static images, as contrasted to fluoroscopy, which are technically also projectional.

The detective quantum efficiency is a measure of the combined effects of the signal and noise performance of an imaging system, generally expressed as a function of spatial frequency. This value is used primarily to describe imaging detectors in optical imaging and medical radiography.

Cone beam computed tomography

Cone beam computed tomography is a medical imaging technique consisting of X-ray computed tomography where the X-rays are divergent, forming a cone.

Coronary CT angiography Use of computed tomography angiography to assess the coronary arteries of the heart

Coronary CT angiography is the use of computed tomography (CT) angiography to assess the coronary arteries of the heart. The patient receives an intravenous injection of radiocontrast and then the heart is scanned using a high speed CT scanner, allowing physicians to assess the extent of occlusion in the coronary arteries, usually in order to diagnose coronary artery disease.

Rotational angiography Medical imaging technique based on x-ray,

Rotational angiography is a medical imaging technique based on x-ray, that allows to acquire CT-like 3D volumes during hybrid surgery or during a catheter intervention using a fixed C-Arm. The fixed C-Arm thereby rotates around the patient and acquires a series of x-ray images that are then reconstructed through software algorithms into a 3D image. Synonyms for rotational angiography include flat-panel volume CT and cone-beam CT.

<span class="mw-page-title-main">Hybrid operating room</span> Type of surgical theatre

A hybrid operating room is a surgical theatre that is equipped with advanced medical imaging devices such as fixed C-Arms, X-ray computed tomography (CT) scanners or magnetic resonance imaging (MRI) scanners. These imaging devices enable minimally-invasive surgery. Minimally-invasive surgery is intended to be less traumatic for the patient and minimize incisions on the patient and perform surgery procedure through one or several small cuts.

Photon counting Counting photons using a single-photon detector

Photon counting is a technique in which individual photons are counted using a single-photon detector (SPD). A single-photon detector emits a pulse of signal for each detected photon, in contrast to a normal photodetector, which generates an analog signal proportional to the photon flux. The number of pulses is counted, giving an integer number of photons detected per measurement interval. The counting efficiency is determined by the quantum efficiency and the system's electronic losses.

Kinetic imaging

Kinetic imaging is an imaging technology developed by Szabolcs Osváth and Krisztián Szigeti in the Department of Biophysics and Radiation Biology at Semmelweis University. The technology allows the visualization of motion; it is based on an altered data acquisition and image processing algorithm combined with imaging techniques that use penetrating radiation. Kinetic imaging has the potential for use in a wide variety of areas including medicine, engineering, and surveillance. For example, physiological movements, such as the circulation of blood or motion of organs can be visualized using kinetic imaging. Because of the reduced noise and the motion-based image contrast, kinetic imaging can be used to reduce X-ray dose and/or amount of required contrast agent in medical imaging. In fact, clinical trials are underway in the fields of vascular surgery and interventional radiology. Non-medical applications include non-destructive testing of products and port security scanning for stowaway pests.

Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Dual-energy imaging, i.e. imaging at two energy levels, is a special case of spectral imaging and is still the most widely used terminology, but the terms "spectral imaging" and "spectral CT" have been coined to acknowledge the fact that photon-counting detectors have the potential for measurements at a larger number of energy levels.

Carbon dioxide angiography Diagnostic radiographic technique

Carbon dioxide angiography is a diagnostic radiographic technique in which a carbon dioxide (CO2) based contrast medium is used - unlike traditional angiography where the contrast medium normally used is iodine based – to see and study the body vessels. Since CO2 is a non-radio-opaque contrast medium, angiographic procedures need to be performed in subtraction angiography (DSA).

Photon-counting mammography was introduced commercially in 2003 and was the first widely available application of photon-counting detector technology in medical x-ray imaging. Photon-counting mammography improves dose efficiency compared to conventional technologies, and enables spectral imaging.

References

  1. 1 2 3 Gyánó, Marcell; Góg, István; Óriás, Viktor I.; Ruzsa, Zoltán; Nemes, Balázs; Csobay-Novák, Csaba; Oláh, Zoltán; Nagy, Zsuzsa; Merkely, Béla; Szigeti, Krisztián; Osváth, Szabolcs (2018-10-16). "Kinetic Imaging in Lower Extremity Arteriography: Comparison to Digital Subtraction Angiography". Radiology. 290 (1): 246–253. doi: 10.1148/radiol.2018172927 . ISSN   0033-8419. PMID   30325284.
  2. 1 2 Óriás, Viktor Imre; Gyánó, Marcell; Góg, István; Szöllősi, Dávid; Veres, Dániel Sándor; Nagy, Zsuzsa; Csobay-Novák, Csaba; Zoltán, Oláh; Kiss, János P.; Osváth, Szabolcs; Szigeti, Krisztián (2019-07-01). "Digital Variance Angiography as a Paradigm Shift in Carbon Dioxide Angiography". Investigative Radiology. 54 (7): 428–436. doi:10.1097/RLI.0000000000000555. ISSN   1536-0210. PMID   30829769. S2CID   73464069.
  3. "CIRSE 2019 Abstracts". CardioVascular and Interventional Radiology. 42 (Suppl 3): 65–549. 2019-08-01. doi:10.1007/s00270-019-02282-x. ISSN   1432-086X. PMC   7103159 . PMID   31385003.