Dispersive partial differential equation

Last updated

In mathematics, a dispersive partial differential equation or dispersive PDE is a partial differential equation that is dispersive. In this context, dispersion means that waves of different wavelength propagate at different phase velocities.

Contents

Examples

Linear equations

Nonlinear equations

See also

Related Research Articles

Soliton a self-reinforcing single wave packet that maintains its shape while it propagates at a constant velocity

In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems.

Partial differential equation differential equation that contains unknown multivariable functions and their partial derivatives

In mathematics, a partial differential equation (PDE) is a differential equation that contains unknown multivariable functions and their partial derivatives. PDEs are used to formulate problems involving functions of several variables, and are either solved by hand, or used to create a computer model. A special case is ordinary differential equations (ODEs), which deal with functions of a single variable and their derivatives.

Schrödinger equation Linear partial differential equation whose solution describes the quantum-mechanical system.

The Schrödinger equation is a linear partial differential equation that describes the wave function or state function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject. The equation is named after Erwin Schrödinger, who postulated the equation in 1925, and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

Nonlinear Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

Breather nonlinear wave in which energy concentrates in a localized and oscillatory fashion

In physics, a breather is a nonlinear wave in which energy concentrates in a localized and oscillatory fashion. This contradicts with the expectations derived from the corresponding linear system for infinitesimal amplitudes, which tends towards an even distribution of initially localized energy.

In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium.

Kadomtsev–Petviashvili equation PDE to describe nonlinear wave motion

In mathematics and physics, the Kadomtsev–Petviashvili equation – or KP equation, named after Boris Borisovich Kadomtsev and Vladimir Iosifovich Petviashvili – is a partial differential equation to describe nonlinear wave motion. The KP equation is usually written as:

In mathematics, the inverse scattering transform is a method for solving some non-linear partial differential equations. It is one of the most important developments in mathematical physics in the past 40 years. The method is a non-linear analogue, and in some sense generalization, of the Fourier transform, which itself is applied to solve many linear partial differential equations. The name "inverse scattering method" comes from the key idea of recovering the time evolution of a potential from the time evolution of its scattering data: inverse scattering refers to the problem of recovering a potential from its scattering matrix, as opposed to the direct scattering problem of finding the scattering matrix from the potential.

A separable partial differential equation (PDE) is one that can be broken into a set of separate equations of lower dimensionality by a method of separation of variables. This generally relies upon the problem having some special form or symmetry. In this way, the PDE can be solved by solving a set of simpler PDEs, or even ordinary differential equations (ODEs) if the problem can be broken down into one-dimensional equations.

Dispersive may refer to:

Boussinesq approximation (water waves) An approximation valid for weakly non-linear and fairly long waves

In fluid dynamics, the Boussinesq approximation for water waves is an approximation valid for weakly non-linear and fairly long waves. The approximation is named after Joseph Boussinesq, who first derived them in response to the observation by John Scott Russell of the wave of translation. The 1872 paper of Boussinesq introduces the equations now known as the Boussinesq equations.

Nonlinear partial differential equation partial differential equation with nonlinear terms

In mathematics and physics, a nonlinear partial differential equation is a partial differential equation with nonlinear terms. They describe many different physical systems, ranging from gravitation to fluid dynamics, and have been used in mathematics to solve problems such as the Poincaré conjecture and the Calabi conjecture. They are difficult to study: there are almost no general techniques that work for all such equations, and usually each individual equation has to be studied as a separate problem.

In mathematics, the Benjamin–Ono equation is a nonlinear partial integro-differential equation that describes one-dimensional internal waves in deep water. It was introduced by Benjamin (1967) and Ono (1975).

In mathematics, the Zakharov–Schulman system is a system of nonlinear partial differential equations introduced in to describe the interactions of small amplitude, high frequency waves with acoustic waves. The equations are

Dispersionless limits of integrable partial differential equations (PDE) arise in various problems of mathematics and physics and have been intensively studied in recent literature. They typically arise when considering slowly modulated long waves of an integrable dispersive PDE system.

In mathematical physics, the Eckhaus equation – or the Kundu–Eckhaus equation – is a nonlinear partial differential equations within the nonlinear Schrödinger class:

Gigliola Staffilani Italian-American mathematician

Gigliola Staffilani is an Italian-American mathematician who works as the Abby Rockefeller Mauze Professor of Mathematics at the Massachusetts Institute of Technology. Her research concerns harmonic analysis and partial differential equations, including the Korteweg–de Vries equation and Schrödinger equation.

Frank Merle is a French mathematician, specializing in partial differential equations and mathematical physics.

Monica Vișan is a Romanian mathematician at the University of California, Los Angeles who specialized in PDE and well known for her work on the nonlinear Schrödinger equation.