Distonic ion

Last updated
A distonic ion, showing that the molecule's radical site and charge are in different locations. Distonic ion.gif
A distonic ion, showing that the molecule's radical site and charge are in different locations.

Distonic ions are chemical species that contain ionic charges and radical sites in different locations (on separate atoms), unlike regular radicals where the formal charge and unpaired electron are in the same location. [1] These molecular species are created by ionization of either zwitterions or diradicals; ultimately, a neutral molecule loses an electron. [2] Through experimental research distonic radicals have been found to be extremely stable gas phase ions [3] and can be separated into different classes depending on the inherent features of the charged portion of the ion. [4]

Contents

History

In 1984 scientists Bouma, Radom and Yates originated the term through extensive experimental research but they were not the first to deal with distonic ions. Experiments date back to the 1970s with Gross and McLafferty who were the first to propose the idea of such a species. [5]

Example of distonic ion in the class -ate Distonic ion 2.gif
Example of distonic ion in the class -ate

Ion structure

Several efficient techniques are available to detect the presence of distonic ions; the most appropriate method will depend on the ion's internal energy and lifespan. [3] Collisions between ions and uncharged molecules allow one to detect the location of the radical and charge site in order to confirm that the ion is not just a regular radical ion. [7] When a molecule is ionized and can structurally be classified as a distonic ion, the molecule's kinetics and thermodynamic properties have been greatly altered. However, additional chemical properties are based on the reactions of the central excited ions. Mass spectrometry techniques are used to study their chemistry. [8]

Experimental data

Distonic ions have been extensively examined due to their unique behavior and how commonly they can occur. [2] It has been shown that in most cases distonic ions have a bonding arrangement corresponding to that of the original molecule before ionization occurred; but that distonic ions are less stable than before ionization occurred; even so, distonic ions are considered stable ions and have caught many scientists' attention because they possess more stability than its traditional isomer.[ clarification needed ] [3] It may be difficult to decipher the functions[ clarification needed ] of the charge and radical site because distonic ions are limited to elementary reactions such as unimolecular reactions involving highly excited and short-lived species. [9]

Related Research Articles

<span class="mw-page-title-main">Ion source</span> Device that creates charged atoms and molecules (ions)

An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines.

<span class="mw-page-title-main">Electrospray ionization</span> Technique used in mass spectroscopy

Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules because it overcomes the propensity of these molecules to fragment when ionized. ESI is different from other ionization processes since it may produce multiple-charged ions, effectively extending the mass range of the analyser to accommodate the kDa-MDa orders of magnitude observed in proteins and their associated polypeptide fragments.

In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. Because electrophiles accept electrons, they are Lewis acids. Most electrophiles are positively charged, have an atom that carries a partial positive charge, or have an atom that does not have an octet of electrons.

<span class="mw-page-title-main">Chemical ionization</span> Ionization technique used in mass [[spectroscopy]]

Chemical ionization (CI) is a soft ionization technique used in mass spectrometry. This was first introduced by Burnaby Munson and Frank H. Field in 1966. This technique is a branch of gaseous ion-molecule chemistry. Reagent gas molecules are ionized by electron ionization to form reagent ions, which subsequently react with analyte molecules in the gas phase to create analyte ions for analysis by mass spectrometry. Negative chemical ionization (NCI), charge-exchange chemical ionization, atmospheric-pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) are some of the common variants of the technique. CI mass spectrometry finds general application in the identification, structure elucidation and quantitation of organic compounds as well as some utility in biochemical analysis. Samples to be analyzed must be in vapour form, or else, must be vapourized before introduction into the source.

<span class="mw-page-title-main">Matrix-assisted laser desorption/ionization</span> Ionization technique

In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy-absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of biomolecules and various organic molecules, which tend to be fragile and fragment when ionized by more conventional ionization methods. It is similar in character to electrospray ionization (ESI) in that both techniques are relatively soft ways of obtaining ions of large molecules in the gas phase, though MALDI typically produces far fewer multi-charged ions.

<span class="mw-page-title-main">Electron-capture dissociation</span> Method in mass spectrometry

Electron-capture dissociation (ECD) is a method of fragmenting gas-phase ions for structure elucidation of peptides and proteins in tandem mass spectrometry. It is one of the most widely used techniques for activation and dissociation of mass selected precursor ion in MS/MS. It involves the direct introduction of low-energy electrons to trapped gas-phase ions.

<span class="mw-page-title-main">Fast atom bombardment</span>

Fast atom bombardment (FAB) is an ionization technique used in mass spectrometry in which a beam of high energy atoms strikes a surface to create ions. It was developed by Michael Barber at the University of Manchester in 1980. When a beam of high energy ions is used instead of atoms, the method is known as liquid secondary ion mass spectrometry (LSIMS). In FAB and LSIMS, the material to be analyzed is mixed with a non-volatile chemical protection environment, called a matrix, and is bombarded under vacuum with a high energy atomic beam. The atoms are typically from an inert gas such as argon or xenon. Common matrices include glycerol, thioglycerol, 3-nitrobenzyl alcohol (3-NBA), 18-crown-6 ether, 2-nitrophenyloctyl ether, sulfolane, diethanolamine, and triethanolamine. This technique is similar to secondary ion mass spectrometry and plasma desorption mass spectrometry.

<span class="mw-page-title-main">Atmospheric-pressure chemical ionization</span> Ionization method

Atmospheric pressure chemical ionization (APCI) is an ionization method used in mass spectrometry which utilizes gas-phase ion-molecule reactions at atmospheric pressure (105 Pa), commonly coupled with high-performance liquid chromatography (HPLC). APCI is a soft ionization method similar to chemical ionization where primary ions are produced on a solvent spray. The main usage of APCI is for polar and relatively less polar thermally stable compounds with molecular weight less than 1500 Da. The application of APCI with HPLC has gained a large popularity in trace analysis detection such as steroids, pesticides and also in pharmacology for drug metabolites.

Gas phase ion chemistry is a field of science encompassed within both chemistry and physics. It is the science that studies ions and molecules in the gas phase, most often enabled by some form of mass spectrometry. By far the most important applications for this science is in studying the thermodynamics and kinetics of reactions. For example, one application is in studying the thermodynamics of the solvation of ions. Ions with small solvation spheres of 1, 2, 3... solvent molecules can be studied in the gas phase and then extrapolated to bulk solution.

<span class="mw-page-title-main">Electron-transfer dissociation</span>

Electron-transfer dissociation (ETD) is a method of fragmenting multiply-charged gaseous macromolecules in a mass spectrometer between the stages of tandem mass spectrometry (MS/MS). Similar to electron-capture dissociation, ETD induces fragmentation of large, multiply-charged cations by transferring electrons to them. ETD is used extensively with polymers and biological molecules such as proteins and peptides for sequence analysis. Transferring an electron causes peptide backbone cleavage into c- and z-ions while leaving labile post translational modifications (PTM) intact. The technique only works well for higher charge state peptide or polymer ions (z>2). However, relative to collision-induced dissociation (CID), ETD is advantageous for the fragmentation of longer peptides or even entire proteins. This makes the technique important for top-down proteomics. The method was developed by Hunt and coworkers at the University of Virginia.

<span class="mw-page-title-main">Mass spectral interpretation</span>

Mass spectral interpretation is the method employed to identify the chemical formula, characteristic fragment patterns and possible fragment ions from the mass spectra. Mass spectra is a plot of relative abundance against mass-to-charge ratio. It is commonly used for the identification of organic compounds from electron ionization mass spectrometry. Organic chemists obtain mass spectra of chemical compounds as part of structure elucidation and the analysis is part of many organic chemistry curricula.

Michael L. Gross is Professor of Chemistry, Medicine, and Immunology, at Washington University in St. Louis. He was formerly Professor of Chemistry at the University of Nebraska-Lincoln from 1968–1994. He is recognized for his contributions to the field of mass spectrometry and ion chemistry. He is credited with the discovery of distonic ions, chemical species containing a radical and an ionic site on different atoms of the same molecule.

Chemi-ionization is the formation of an ion through the reaction of a gas phase atom or molecule with an atom or molecule in an excited state while also creating new bonds. This process is helpful in mass spectrometry because it creates unique bands that can be used to identify molecules. This process is extremely common in nature as it is considered the primary initial reaction in flames.

<span class="mw-page-title-main">Ambient ionization</span>

Ambient ionization is a form of ionization in which ions are formed in an ion source outside the mass spectrometer without sample preparation or separation. Ions can be formed by extraction into charged electrospray droplets, thermally desorbed and ionized by chemical ionization, or laser desorbed or ablated and post-ionized before they enter the mass spectrometer.

<span class="mw-page-title-main">Fragmentation (mass spectrometry)</span>

In mass spectrometry, fragmentation is the dissociation of energetically unstable molecular ions formed from passing the molecules mass spectrum. These reactions are well documented over the decades and fragmentation patterns are useful to determine the molar weight and structural information of unknown molecules. Fragmentation that occurs in tandem mass spectrometry experiments has been a recent focus of research, because this data helps facilitate the identification of molecules.

<span class="mw-page-title-main">Methenium</span> Ion of carbon with three hydrogens

In organic chemistry, methenium is a cation with the formula CH+
3
. It can be viewed as a methylene radical with an added proton, or as a methyl radical with one electron removed. It is a carbocation and an enium ion, making it the simplest of the carbenium ions.

Jennifer S. Brodbelt is an American chemist known for her research using mass spectrometry to characterize organic compounds, especially biopolymers and proteins.

<span class="mw-page-title-main">Infrared photodissociation spectroscopy</span>

Infrared photodissociation (IRPD) spectroscopy uses infrared radiation to break bonds in, often ionic, molecules (photodissociation), within a mass spectrometer. In combination with post-ionization, this technique can also be used for neutral species. IRPD spectroscopy has been shown to use electron ionization, corona discharge, and electrospray ionization to obtain spectra of volatile and nonvolatile compounds. Ionized gases trapped in a mass spectrometer can be studied without the need of a solvent as in infrared spectroscopy.

Hydrogen-bridged cations are a type of charged species in which a hydrogen atom is simultaneously bonded to two atoms through partial sigma bonds. While best observable in the presence of superacids at room temperature, spectroscopic evidence has suggested that hydrogen-bridged cations exist in ordinary solvents. These ions have been the subject of debate as they constitute a type of charged species of uncertain electronic structure.

Hilkka Inkeri Kenttämaa is a researcher in organic and bioorganic mass spectrometry, and the Frank Brown Endowed Distinguished Professor of Chemistry at Purdue University. She is a pioneer in distonic radical cation research and laser-induced acoustic desorption.

References

  1. Muller, P. (1994). "Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994)". Pure and Applied Chemistry. 66 (5): 1077–1184. doi: 10.1351/pac199466051077 . ISSN   1365-3075. S2CID   195819485.
  2. 1 2 Tomazela, Daniela Maria; Sabino, Adão A.; Sparrapan, Regina; Gozzo, Fabio C.; Eberlin, Marcos N. (July 2006). "Distonoid ions". Journal of the American Society for Mass Spectrometry. 17 (7): 1014–1022. doi:10.1016/j.jasms.2006.03.008. PMID   16713292.
  3. 1 2 3 Stirk, Krista M.; Kiminkinen, L. K. Marjatta; Kenttamaa, Hilkka I. (November 1992). "Ion-molecule reactions of distonic radical cations". Chemical Reviews. 92 (7): 1649–1665. doi:10.1021/cr00015a008.
  4. Hill, Brian T.; Poutsma, John C.; Chyall, Leonard J.; Hu, Jun; Squires, Robert R. (September 1999). "Distonic ions of the 'ate' class". Journal of the American Society for Mass Spectrometry. 10 (9): 896–906. doi:10.1016/S1044-0305(99)00053-7. S2CID   97267758.
  5. Williams, Peggy E.; Jankiewicz, Bartlomiej J.; Yang, Linan; Kenttamaa, Hilkka I. (12 November 2013). "ChemInform Abstract: Properties and Reactivity of Gaseous Distonic Radical Ions with Aryl Radical Sites". ChemInform. 44 (46): no. doi:10.1002/chin.201346233.
  6. Hill, Brian T.; Poutsma, John C.; Chyall, Leonard J.; Hu, Jun; Squires, Robert R. (September 1999). "Distonic ions of the "Ate" class". Journal of the American Society for Mass Spectrometry. 10 (9): 896–906. doi:10.1016/S1044-0305(99)00053-7. S2CID   97267758.
  7. Yu, Sophia J.; Holliman, Christopher L.; Rempel, Don L.; Gross, Michael L. (1993-10-01). "The .beta.-distonic ion from the reaction of pyridine radical cation and ethene: a demonstration of high-pressure trapping in Fourier transform mass spectrometry". Journal of the American Chemical Society. 115 (21): 9676–9682. doi:10.1021/ja00074a037. ISSN   0002-7863.
  8. Holman, R.W.; Rozeboom, M.D.; Gross, M.L.; Warner, C.D. (January 1986). "Mass spectrometry for investigations of gas-phase radical cation chemistry". Tetrahedron. 42 (22): 6235–6244. doi:10.1016/S0040-4020(01)88085-6.
  9. Stirk, Krista G.; Kenttamaa, Hilkka I. (1991-07-01). "Radical type reactivity in a .gamma.-distonic radical cation: a gas-phase experimental study". Journal of the American Chemical Society. 113 (15): 5880–5881. doi:10.1021/ja00015a062. ISSN   0002-7863.