Divinylether fatty acids

Last updated
Chemical structure of colneleic acid Colneleic acid.svg
Chemical structure of colneleic acid

Divinylether fatty acids contain a fatty acid chemically combined with a doubly unsaturated carbon chain linked by an oxygen atom (ether).

Fatty acid hydroperoxides generated by plant lipoxygenases from linoleic and linolenic acids are known to serve as substrates for a divinyl ether synthase which produces divinyl ether fatty acids. Divinyl ethers were detected only within the plant kingdom.

The discovery of that class of compounds dates to 1972, when the structures of two ether C18 fatty acids generated by homogenates of the potato tuber were described. [1] These compounds, named colneleic acid (from linoleic acid) and colnelenicacid (from linolenic acid), could be also produced in potato leaves and tomato roots by rearrangement of 9-hydroperoxides.

Isomers of colneleic acid and colnelenic acid were isolated from homogenates of leaves of Clematis vitalba (Ranunculaceae). [2]

Similarly, 13-lipoxygenase-generated hydroperoxides serve as precursor of other divinyl ether fatty acids which are produced in bulbs of garlic [3] or Ranunculus leaves. [4] These compounds were named etheroleic and etherolenic acids. Etheroleic acid has systematic name 12-[1′E-hexenyloxy]-9Z,11Z-dodecadienoic acid. Etherolenic acid has systematic name (9Z,11E,1'E,3'Z)-12-(1',3'-Hexadienyloxy)-9,11-dodecadienoic acid.

The physiological significance of divinyl ethers is still not fully studied. As infection of potato leaves leads to increased levels of divinyl ether synthase, it was suggested that this pathway could be of importance in the defense of plants against attacking pathogens. [5] Similar structures have been discovered in the brown alga Laminaria sinclairii , with 18 or 20 carbons and 4, 5 or 6 double bonds, [6] and in the red alga Polyneura latissima , with 20 carbons and 5 double bonds. [7]

Related Research Articles

Essential fatty acids, or EFAs, are fatty acids that are required by humans and other animals for normal physiological function that cannot be synthesized in the body.⁠ As they are not synthesized in the body, the essential fatty acids – alpha-linolenic acid (ALA) and linoleic acid – must be obtained from food or from a dietary supplement. Essential fatty acids are needed for various cellular metabolic processes and for the maintenance and function of tissues and organs. These fatty acids also are precursors to vitamins, cofactors, and derivatives, including prostaglandins, leukotrienes, thromboxanes, lipoxins, and others.

α-Linolenic acid Chemical compound

α-Linolenic acid, also known as alpha-linolenic acid (ALA), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils.

<span class="mw-page-title-main">Lipoxygenase</span>

Lipoxygenases (LOX) are a family of (non-heme) iron-containing enzymes, more specifically oxidative enzymes, most of which catalyze the dioxygenation of polyunsaturated fatty acids in lipids containing a cis,cis-1,4-pentadiene into cell signaling agents that serve diverse roles as autocrine signals that regulate the function of their parent cells, paracrine signals that regulate the function of nearby cells, and endocrine signals that regulate the function of distant cells.

<span class="mw-page-title-main">Essential fatty acid interactions</span>

There is a wide variety of fatty acids found in nature. Two classes of fatty acids are considered essential, the omega-3 and omega-6 fatty acids. Essential fatty acids are necessary for humans but cannot be synthesized by the body and must therefore be obtained from food. Omega-3 and omega-6 are used in some cellular signaling pathways and are involved in mediating inflammation, protein synthesis, and metabolic pathways in the human body.

<span class="mw-page-title-main">Hepoxilin</span> Chemical compound

Hepoxilins (Hx) are a set of epoxyalcohol metabolites of polyunsaturated fatty acids (PUFA), i.e. they possess both an epoxide and an alcohol residue. HxA3, HxB3, and their non-enzymatically formed isomers are nonclassic eicosanoid derived from acid the (PUFA), arachidonic acid. A second group of less well studied hepoxilins, HxA4, HxB4, and their non-enzymatically formed isomers are nonclassical eicosanoids derived from the PUFA, eicosapentaenoic acid. Recently, 14,15-HxA3 and 14,15-HxB3 have been defined as arachidonic acid derivatives that are produced by a different metabolic pathway than HxA3, HxB3, HxA4, or HxB4 and differ from the aforementioned hepoxilins in the positions of their hydroxyl and epoxide residues. Finally, hepoxilin-like products of two other PUFAs, docosahexaenoic acid and linoleic acid, have been described. All of these epoxyalcohol metabolites are at least somewhat unstable and are readily enzymatically or non-enzymatically to their corresponding trihydroxy counterparts, the trioxilins (TrX). HxA3 and HxB3, in particular, are being rapidly metabolized to TrXA3, TrXB3, and TrXC3. Hepoxilins have various biological activities in animal models and/or cultured mammalian tissues and cells. The TrX metabolites of HxA3 and HxB3 have less or no activity in most of the systems studied but in some systems retain the activity of their precursor hepoxilins. Based on these studies, it has been proposed that the hepoxilins and trioxilins function in human physiology and pathology by, for example, promoting inflammation responses and dilating arteries to regulate regional blood flow and blood pressure.

In organic chemistry, pentadiene is any hydrocarbon with an open chain of five carbons, connected by two single bonds and two double bonds. All those compounds have the same molecular formula C5H8. The inventory of pentadienes include:

<span class="mw-page-title-main">Mead acid</span> Chemical compound

Mead acid is an omega-9 fatty acid, first characterized by James F. Mead. As with some other omega-9 polyunsaturated fatty acids, animals can make Mead acid de novo. Its elevated presence in the blood is an indication of essential fatty acid deficiency. Mead acid is found in large quantities in cartilage.

In enzymology, a linoleate 11-lipoxygenase (EC 1.13.11.45) is an enzyme that catalyzes the chemical reaction

In enzymology, a linoleate diol synthase (EC 1.13.11.44) is an enzyme that catalyzes the chemical reaction

The enzyme hydroperoxide dehydratase (EC 4.2.1.92) catalyzes the chemical reaction

<span class="mw-page-title-main">ALOX12B</span> Protein-coding gene in the species Homo sapiens

Arachidonate 12-lipoxygenase, 12R type, also known as ALOX12B, 12R-LOX, and arachidonate lipoxygenase 3, is a lipoxygenase-type enzyme composed of 701 amino acids and encoded by the ALOX12B gene. The gene is located on chromosome 17 at position 13.1 where it forms a cluster with two other lipoxygenases, ALOXE3 and ALOX15B. Among the human lipoxygenases, ALOX12B is most closely related in amino acid sequence to ALOXE3

<span class="mw-page-title-main">Oxylipin</span> Class of lipids

Oxylipins constitute a family of oxygenated natural products which are formed from fatty acids by pathways involving at least one step of dioxygen-dependent oxidation. These small polar lipid compounds are metabolites of polyunsaturated fatty acids (PUFAs) including omega-3 fatty acids and omega-6 fatty acids. Oxylipins are formed by enyzmatic or non-enzymatic oxidation of PUFAs.

Linoleate 9S-lipoxygenase (EC 1.13.11.58, 9-lipoxygenase, 9S-lipoxygenase, linoleate 9-lipoxygenase, LOX1 (gene), 9S-LOX) is an enzyme with systematic name linoleate:oxygen 9S-oxidoreductase. This enzyme catalyses the following chemical reaction

Linoleate 8R-lipoxygenase (EC 1.13.11.60, linoleic acid 8R-dioxygenase, 5,8-LDS (bifunctional enzyme), 7,8-LDS (bifunctional enzyme), 5,8-linoleate diol synthase (bifunctional enzyme), 7,8-linoleate diol synthase (bifunctional enzyme), PpoA) is an enzyme with systematic name linoleate:oxygen (8R)-oxidoreductase. This enzyme catalyses the following chemical reaction

Linoleate 10R-lipoxygenase (EC 1.13.11.62, 10R-DOX, (10R)-dioxygenase, 10R-dioxygenase) is an enzyme with systematic name linoleate:oxygen (10R)-oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">13-Hydroxyoctadecadienoic acid</span> Chemical compound

13-Hydroxyoctadecadienoic acid (13-HODE) is the commonly used term for 13(S)-hydroxy-9Z,11E-octadecadienoic acid (13(S)-HODE). The production of 13(S)-HODE is often accompanied by the production of its stereoisomer, 13(R)-hydroxy-9Z,11E-octadecadienoic acid (13(R)-HODE). The adjacent figure gives the structure for the (S) stereoisomer of 13-HODE. Two other naturally occurring 13-HODEs that may accompany the production of 13(S)-HODE are its cis-trans (i.e., 9E,11E) isomers viz., 13(S)-hydroxy-9E,11E-octadecadienoic acid (13(S)-EE-HODE) and 13(R)-hydroxy-9E,11E-octadecadienoic acid (13(R)-EE-HODE). Studies credit 13(S)-HODE with a range of clinically relevant bioactivities; recent studies have assigned activities to 13(R)-HODE that differ from those of 13(S)-HODE; and other studies have proposed that one or more of these HODEs mediate physiological and pathological responses, are markers of various human diseases, and/or contribute to the progression of certain diseases in humans. Since, however, many studies on the identification, quantification, and actions of 13(S)-HODE in cells and tissues have employed methods that did not distinguish between these isomers, 13-HODE is used here when the actual isomer studied is unclear.

trans,cis-2,6-Nonadienal is an organic compound that is classified as a doubly unsaturated derivative of nonanal. The molecule consists of a α,β-unsaturated aldehyde with an isolated alkene group. The compound has attracted attention as the essence of cucumbers, but it is also found in bread crust and freshly cut watermelon.

<span class="mw-page-title-main">Hydroperoxide lyase</span>

Hydroperoxide lyases are enzymes that catalyze the cleavage of C-C bonds in the hydroperoxides of fatty acids. They belong to the cytochrome P450 enzyme family.

(3<i>Z</i>)-Nonenal Chemical compound

(3Z)-Nonenal is an unsaturated aldehyde that occurs naturally in various plants.

References

  1. Galliard, T.; Phillips, D. R. (September 1972). "The enzymic conversion of linoleic acid into 9-(nona-1′,3′-dienoxy)non-8-enoic acid, a novel unsaturated ether derivative isolated from homogenates of Solanum tuberosum tubers". Biochemical Journal. 129 (3): 743–753. doi:10.1042/bj1290743. PMC   1174176 . PMID   4658996.
  2. Hamberg, M. (June 2004). "Isolation and structures of two divinyl ether fatty acids from Clematis vitalba". Lipids. 39 (6): 565–569. doi:10.1007/s11745-004-1264-9. PMID   15554156.
  3. Grechkin, Alexander N.; Fazliev, F. N.; Mukhtarova, L. S. (October 1995). "The lipoxygenase pathway in garlic (Allium sativum L.) bulbs: detection of the novel divinyl ether oxylipins". FEBS Letters. 371 (2): 159–162. doi: 10.1016/0014-5793(95)00895-G . PMID   7672118.
  4. Hamberg, M. (November 1998). "A pathway for biosynthesis of divinyl ether fatty acids in green leaves". Lipids. 33 (11): 1061–1071. doi:10.1007/s11745-998-0306-7. PMID   9870900.
  5. Göbel, C; Feussner, I.; Hamberg M, M.; Rosahl, S. (5 September 2002). "Oxylipin profiling in pathogen-infected potato leaves". Biochim Biophys Acta. 1584 (1): 55–64. doi:10.1016/s1388-1981(02)00268-8. PMID   12213493.
  6. Proteau, P. J.; Gerwick, William H. (1993). "Divinyl ethers and hydroxy fatty acids from three species of Laminaria (brown algae)". Lipids. 28 (9): 783–787. doi:10.1007/bf02536231. PMID   8231653.
  7. Jiang, Z. D.; Gerwick, William H. (1 March 1997). "Novel oxylipins from the temperate red alga Polyneura latissima". Lipids. 32 (3): 231–235. doi:10.1007/s11745-997-0029-9. PMID   9076659.