Double-well potential

Last updated

The so-called double-well potential is one of a number of quartic potentials of considerable interest in quantum mechanics, in quantum field theory and elsewhere for the exploration of various physical phenomena or mathematical properties since it permits in many cases explicit calculation without over-simplification.

Contents

Thus the "symmetric double-well potential" served for many years as a model to illustrate the concept of instantons as a pseudo-classical configuration in a Euclideanised field theory. [1] In the simpler quantum mechanical context this potential served as a model for the evaluation of Feynman path integrals. [2] [3] or the solution of the Schrödinger equation by various methods for the purpose of obtaining explicitly the energy eigenvalues.

The "inverted symmetric double-well potential", on the other hand, served as a nontrivial potential in the Schrödinger equation for the calculation of decay rates [4] and the exploration of the large order behavior of asymptotic expansions. [5] [6] [7]

The third form of the quartic potential is that of a "perturbed simple harmonic oscillator" or ″pure anharmonic oscillator″ having a purely discrete energy spectrum.

The fourth type of possible quartic potential is that of "asymmetric shape" of one of the first two named above.

The double-well and other quartic potentials can be treated by a variety of methods—the main methods being (a) a perturbation method (that of B. Dingle and H.J.W. Müller-Kirsten [8] ) which requires the imposition of boundary conditions, (b) the WKB method and (c) the path integral method.. All cases are treated in detail in the book of H.J.W. Müller-Kirsten. [9] The large order behavior of asymptotic expansions of Mathieu functions and their eigenvalues (also called characteristic numbers) has been derived in a further paper of R.B. Dingle and H.J.W. Müller. [10]

The symmetric double-well

The main interest in the literature has (for reasons related to field theory) focused on the symmetric double-well (potential), and there on the quantum mechanical ground state. Since tunneling through the central hump of the potential is involved, the calculation of the eigenenergies of the Schrödinger equation for this potential is nontrivial. The case of the ground state is mediated by pseudoclassical configurations known as instanton and anti-instanton. In explicit form these are hyperbolic functions. As pseudoclassical configurations these naturally appear in semiclassical considerations—the summation of (widely separated) instanton-anti-instanton pairs being known as the dilute gas approximation. The ground state eigenenergy finally obtained is an expression containing the exponential of the Euclidean action of the instanton. This is an expression containing the factor and is therefore described as a (classically) nonperturbative effect.

The stability of the instanton configuration in the path integral theory of a scalar field theory with symmetric double-well self-interaction is investigated using the equation of small oscillations about the instanton. One finds that this equation is a Pöschl-Teller equation (i.e. a second order differential equation like the Schrödinger equation with Pöschl-Teller potential) with nonnegative eigenvalues. The nonnegativity of the eigenvalues is indicative of the stability of the instanton. [11]

As stated above, the instanton is the pseudoparticle configuration defined on an infinite line of Euclidean time that communicates between the two wells of the potential and is responsible for the ground state of the system. The configurations correspondingly responsible for higher, i.e. excited, states are periodic instantons defined on a circle of Euclidean time which in explicit form are expressed in terms of Jacobian elliptic functions (the generalization of trigonometric functions). The evaluation of the path integral in these cases involves correspondingly elliptic integrals. The equation of small fluctuations about these periodic instantons is a Lamé equation whose solutions are Lamé functions. In cases of instability (as for the inverted double-well potential) this equation possesses negative eigenvalues indicative of this instability, i.e. decay. [11]

Application of the perturbation method of Dingle and Müller (applied originally to the Mathieu equation, i.e. a Schrödinger equation with cosine potential) requires exploitation of parameter symmetries of the Schrödinger equation for the quartic potential. One expands around one of the two minima of the potential. In addition this method requires matching of different branches of solutions in domains of overlap. The application of boundary conditions finally yields (as in the case of the periodic potential) the nonperturbative effect.

In terms of parameters as in the Schrödinger equation for the symmetric double-well potential in the following form

the eigenvalues for are found to be (see book of Müller-Kirsten, formula (18.175b), p. 425)

Clearly these eigenvalues are asymptotically () degenerate as expected from the harmonic part of the potential. Observe that terms of the perturbative part of the result are alternately even or odd in and (as in corresponding results for Mathieu functions, Lamé functions, prolate spheroidal wave functions, oblate spheroidal wave functions and others).

In field theory contexts the above symmetric double-well potential is often written ( being a scalar field)

and the instanton is the solution of the Newton-like equation

( being the Euclidean time), i.e

The equation of small fluctuations about is the Pöschl-Teller equation (see Pöschl-Teller potential)

with

Since all eigenvalues are positive or zero, the instanton configuration is stable and there is no decay.

In the more general case of the classical solution is the periodic instanton

where is the elliptic modulus of the periodic Jacobian elliptic function . The small fluctuation equation is in this general case a Lamé equation. In the limit the solution becomes the vacuum instanton solution,

The inverted double-well potential

Perturbation theory along with matching of solutions in domains of overlap and imposition of boundary conditions (different from those for the double-well) can again be used to obtain the eigenvalues of the Schrödinger equation for this potential. In this case, however, one expands around the central trough of the potential. The results are therefore different from those above.

In terms of parameters as in the Schrödinger equation for the inverted double-well potential in the following form

the eigenvalues for are found to be (see book of Müller-Kirsten, formula (18.86), p. 503)

The imaginary part of this expression agrees with the result of C.M. Bender and T.T. Wu (see their formula (3.36) and set , and in their notation ). [12] This result plays an important role in the discussion and investigation of the large order behavior of perturbation theory.

The pure anharmonic oscillator

In terms of parameters as in the Schrödinger equation for the pure anharmonic oscillator in the following form

the eigenvalues for are found to be

More terms can easily be calculated. Observe the coefficients of the expansion are alternately even or odd in and , as in all other cases. This is an important aspect of the solutions of the differential equation for quartic potentials.

General comments

The above results for the double-well and the inverted double-well can also be obtained by the path integral method (there via periodic instantons, cf. instantons), and the WKB method, though with the use of elliptic integrals and the Stirling approximation of the gamma function, all of which make the calculation more difficult. The symmetry property of the perturbative part in changes q → -q, → - of the results can only be obtained in the derivation from the Schrödinger equation which is therefore the better and correct way to obtain the result. This conclusion is supported by investigations of other second-order differential equations like the Mathieu equation and the Lamé equation which exhibit similar properties in their eigenvalue equations. Moreover in each of these cases (double-well, inverted double-well, cosine potential) the equation of small fluctuations about the classical configuration is a Lamé equation.

Related Research Articles

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

<span class="mw-page-title-main">Optical depth</span>

In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to transmitted radiant power through a material. Thus, the larger the optical depth, the smaller the amount of transmitted radiant power through the material. Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. The equation is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons. Due to the larger relative mass of a nucleus compared to an electron, the coordinates of the nuclei in a system are approximated as fixed, while the coordinates of the electrons are dynamic. The approach is named after Max Born and his 23-year-old graduate student J. Robert Oppenheimer, the latter of whom proposed it in 1927 during a period of intense ferment in the development of quantum mechanics.

<span class="mw-page-title-main">Instanton</span> Solitons in Euclidean spacetime

An instanton is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime.

In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system.

In mathematical physics, the WKB approximation or WKB method is a method for finding approximate solutions to linear differential equations with spatially varying coefficients. It is typically used for a semiclassical calculation in quantum mechanics in which the wavefunction is recast as an exponential function, semiclassically expanded, and then either the amplitude or the phase is taken to be changing slowly.

The adiabatic theorem is a concept in quantum mechanics. Its original form, due to Max Born and Vladimir Fock (1928), was stated as follows:

<span class="mw-page-title-main">Hamilton–Jacobi equation</span> A reformulation of Newtons laws of motion using the calculus of variations

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

<span class="mw-page-title-main">Linear time-invariant system</span> Mathematical model which is both linear and time-invariant

In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (xh)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.

<span class="mw-page-title-main">Bring radical</span> Real root of the polynomial x^5+x+a

In algebra, the Bring radical or ultraradical of a real number a is the unique real root of the polynomial

In theoretical physics, Seiberg–Witten theory is an supersymmetric gauge theory with an exact low-energy effective action, of which the kinetic part coincides with the Kähler potential of the moduli space of vacua. Before taking the low-energy effective action, the theory is known as supersymmetric Yang–Mills theory, as the field content is a single vector supermultiplet, analogous to the field content of Yang–Mills theory being a single vector gauge field or connection.

In mathematics, delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. DDEs are also called time-delay systems, systems with aftereffect or dead-time, hereditary systems, equations with deviating argument, or differential-difference equations. They belong to the class of systems with the functional state, i.e. partial differential equations (PDEs) which are infinite dimensional, as opposed to ordinary differential equations (ODEs) having a finite dimensional state vector. Four points may give a possible explanation of the popularity of DDEs:

  1. Aftereffect is an applied problem: it is well known that, together with the increasing expectations of dynamic performances, engineers need their models to behave more like the real process. Many processes include aftereffect phenomena in their inner dynamics. In addition, actuators, sensors, and communication networks that are now involved in feedback control loops introduce such delays. Finally, besides actual delays, time lags are frequently used to simplify very high order models. Then, the interest for DDEs keeps on growing in all scientific areas and, especially, in control engineering.
  2. Delay systems are still resistant to many classical controllers: one could think that the simplest approach would consist in replacing them by some finite-dimensional approximations. Unfortunately, ignoring effects which are adequately represented by DDEs is not a general alternative: in the best situation, it leads to the same degree of complexity in the control design. In worst cases, it is potentially disastrous in terms of stability and oscillations.
  3. Voluntary introduction of delays can benefit the control system.
  4. In spite of their complexity, DDEs often appear as simple infinite-dimensional models in the very complex area of partial differential equations (PDEs).
<span class="mw-page-title-main">Toroidal coordinates</span>

Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

<span class="mw-page-title-main">Bispherical coordinates</span>

Bispherical coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that connects the two foci. Thus, the two foci and in bipolar coordinates remain points in the bispherical coordinate system.

<span class="mw-page-title-main">Oblate spheroidal coordinates</span> Three-dimensional orthogonal coordinate system

Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius in the x-y plane. Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.

The Langer correction, named after the mathematician Rudolf Ernest Langer, is a correction to the WKB approximation for problems with radial symmetry.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

Diffusion Monte Carlo (DMC) or diffusion quantum Monte Carlo is a quantum Monte Carlo method that uses a Green's function to solve the Schrödinger equation. DMC is potentially numerically exact, meaning that it can find the exact ground state energy within a given error for any quantum system. When actually attempting the calculation, one finds that for bosons, the algorithm scales as a polynomial with the system size, but for fermions, DMC scales exponentially with the system size. This makes exact large-scale DMC simulations for fermions impossible; however, DMC employing a clever approximation known as the fixed-node approximation can still yield very accurate results.

<span class="mw-page-title-main">Regge–Wheeler–Zerilli equations</span>

In general relativity, Regge–Wheeler–Zerilli equations are a pair of equations that describes gravitational perturbations of a Schwarzschild black hole, named after Tullio Regge, John Archibald Wheeler and Frank J. Zerilli. The perturbations of a Schwarzchild metric is classified into two types, namely, axial and polar perturbations, a terminology introduced by Subrahmanyan Chandrasekhar. Axial perturbations induce frame dragging by imparting rotations to the black hole and change sign when azimuthal direction is reversed, whereas polar perturbations do not impart rotations and do not change sign under the reversal of azimuthal direction. The equation for axial perturbations is called Regge–Wheeler equation and the equation governing polar perturbations is called Zerilli equation.

References

  1. S. Coleman, The Whys of Subnuclear Physics, ed. A. Zichichi (Plenum Press, 1979), 805-916; S. Coleman, The Uses of Instantons, 1977 International School of Subnuclear Physics, Ettore Majorana.
  2. Gildener, Eldad; Patrascioiu, Adrian (15 July 1977). "Pseudoparticle contributions to the energy spectrum of a one-dimensional system". Physical Review D. American Physical Society (APS). 16 (2): 423–430. doi:10.1103/physrevd.16.423. ISSN   0556-2821.
  3. Liang, Jiu-Qing; Müller-Kirsten, H. J. W. (15 November 1992). "Periodic instantons and quantum-mechanical tunneling at high energy". Physical Review D. American Physical Society (APS). 46 (10): 4685–4690. doi:10.1103/physrevd.46.4685. ISSN   0556-2821. PMID   10014840.
  4. Liang, J.-Q.; Müller-Kirsten, H. J. W. (15 November 1994). "Nonvacuum bounces and quantum tunneling at finite energy" (PDF). Physical Review D. American Physical Society (APS). 50 (10): 6519–6530. doi:10.1103/physrevd.50.6519. ISSN   0556-2821. PMID   10017621.
  5. Bender, Carl M.; Wu, Tai Tsun (5 August 1968). "Analytic Structure of Energy Levels in a Field-Theory Model". Physical Review Letters. American Physical Society (APS). 21 (6): 406–409. doi:10.1103/physrevlett.21.406. ISSN   0031-9007.
  6. Bender, Carl M.; Wu, Tai Tsun (16 August 1971). "Large-Order Behavior of Perturbation Theory". Physical Review Letters. American Physical Society (APS). 27 (7): 461–465. doi:10.1103/physrevlett.27.461. ISSN   0031-9007.
  7. Bender, Carl M.; Wu, Tai Tsun (25 August 1969). "Anharmonic Oscillator". Physical Review. American Physical Society (APS). 184 (5): 1231–1260. doi:10.1103/physrev.184.1231. ISSN   0031-899X.
  8. Müller, H.J.W.; Dingle, R.B. (1962). "Asymptotic Expansions of Mathieu Functions and their Characteristic Numbers". Journal für die reine und angewandte Mathematik. Walter de Gruyter GmbH. 1962 (211): 11. doi:10.1515/crll.1962.211.11. ISSN   0075-4102. S2CID   117516747. in this reference the perturbation method is developed for the cosine potential, i.e. the Mathieu equation; see Mathieu function.
  9. Harald J.W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed., (World Scientific, 2012, ISBN   978-981-4397-73-5)
  10. R.B. Dingle and H.J.W. Müller, The Form of the Coefficients of the Late Terms in Asymptotic Expansions of the Characteristic Numbers of Mathieu and Spheroidal Wave Functions, Journal für die reine und angewandte Mathematik, 216 (1964) 123-133. See also: H.J.W. Müller-Kirsten, ``Perturbation Theory, Level Splitting and Large-Order Behavior´´, Fortschritte der Physik 34 (1986) 775-790.
  11. 1 2 Liang, Jiu-Qing; Müller-Kirsten, H.J.W.; Tchrakian, D.H. (1992). "Solitons, bounces and sphalerons on a circle". Physics Letters B. Elsevier BV. 282 (1–2): 105–110. doi:10.1016/0370-2693(92)90486-n. ISSN   0370-2693.
  12. Bender, Carl M.; Wu, Tai Tsun (15 March 1973). "Anharmonic Oscillator. II. A Study of Perturbation Theory in Large Order". Physical Review D. American Physical Society (APS). 7 (6): 1620–1636. doi:10.1103/physrevd.7.1620. ISSN   0556-2821.