Dovetailing (computer science)

Last updated

Dovetailing, in algorithm design, is a technique that interweaves different computations, performing them essentially simultaneously. Algorithms that use dovetailing are sometimes referred to as dovetailers.

Contents

Examples

Consider a tree that potentially contains a path of infinite length (but each node has only finitely many children): if a depth-first search is performed in this environment, the search may move down an infinite path and never return, potentially leaving part of the tree unexplored. However, if a breadth-first search is used, the existence of an infinite path is no longer a problem: each node is visited in a branching manner according to its distance from the root, so an infinite path will only impact the part of the search travelling down that path.

We can regard this tree as analogous to a collection of programs; in this case, the depth-first approach corresponds to running one program at a time, moving to the next only when the current program has finished running. In the case where one of the programs runs for an infinite amount of time, this transition will never happen. The breadth-first approach of visiting each child on the same level of the tree is an instance of dovetailing, where a single step is performed for every program before moving to the next. Thus, progress is made in each program, regardless of the potential existence of a non-terminating program.

Another example is simulating a non-deterministic Turing machine M by a deterministic one (e.g. by a universal Turing machine). In such case, we need to use dovetailing in case one of the computation branches of M contains an infinite loop.

Infinitely many simultaneous computations

In the case of an infinite number of programs, all potentially infinitely long, neither the breadth-first nor depth-first would be sufficient to ensure progress on all programs. Instead, the following technique can be used: perform the first step of the first program; next, perform the second step of the first program and first step of the second program; next, perform the third step of the first program, second step of the second program and first step of the third program; and so on. This is thus also known as diagonalization (as used e.g. in Haskell's "universe" package or "Omega" monad).

Etymology

An analogy with the interweaving ends of a dovetail joint in woodworking.

See also

Related Research Articles

<span class="mw-page-title-main">Algorithm</span> Sequence of operations for a task

In mathematics and computer science, an algorithm is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes and deduce valid inferences, achieving automation eventually. Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus".

In theoretical computer science, a nondeterministic Turing machine (NTM) is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. That is, an NTM's next state is not completely determined by its action and the current symbol it sees, unlike a deterministic Turing machine.

<span class="mw-page-title-main">Tree (data structure)</span> Abstract data type simulating a hierarchical tree structure and represented as a set of linked nodes

In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected nodes. Each node in the tree can be connected to many children, but must be connected to exactly one parent, except for the root node, which has no parent. These constraints mean there are no cycles or "loops", and also that each child can be treated like the root node of its own subtree, making recursion a useful technique for tree traversal. In contrast to linear data structures, many trees cannot be represented by relationships between neighboring nodes in a single straight line.

<span class="mw-page-title-main">Dijkstra's algorithm</span> Graph search algorithm

Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.

<span class="mw-page-title-main">Breadth-first search</span> Algorithm to search the nodes of a graph

Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property. It starts at the tree root and explores all nodes at the present depth prior to moving on to the nodes at the next depth level. Extra memory, usually a queue, is needed to keep track of the child nodes that were encountered but not yet explored.

<span class="mw-page-title-main">Depth-first search</span> Search algorithm

Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node and explores as far as possible along each branch before backtracking. Extra memory, usually a stack, is needed to keep track of the nodes discovered so far along a specified branch which helps in backtracking of the graph.

In the context of combinatorial game theory, which typically studies sequential games with perfect information, a game tree is a graph representing all possible game states within such a game. Such games include well-known ones such as chess, checkers, Go, and tic-tac-toe. This can be used to measure the complexity of a game, as it represents all the possible ways a game can pan out. Due to the large game trees of complex games such as chess, algorithms that are designed to play this class of games will use partial game trees, which makes computation feasible on modern computers. Various methods exist to solve game trees. If a complete game tree can be generated, a deterministic algorithm, such as backward induction or retrograde analysis can be used. Randomized algorithms and minmax algorithms such as MCTS can be used in cases where a complete game tree is not feasible.

In computer science, iterative deepening search or more specifically iterative deepening depth-first search is a state space/graph search strategy in which a depth-limited version of depth-first search is run repeatedly with increasing depth limits until the goal is found. IDDFS is optimal, meaning that it finds the shallowest goal. Since it visits all the nodes in the search tree down to depth before visiting any nodes at depth , the cumulative order in which nodes are first visited is effectively the same as in breadth-first search. However, IDDFS uses much less memory.

Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is closely linked to the existence of an algorithm to solve the problem.

<span class="mw-page-title-main">Spanning tree</span> Tree which includes all vertices of a graph

In the mathematical field of graph theory, a spanning treeT of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree. If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T.

In computer science, tree traversal is a form of graph traversal and refers to the process of visiting each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited. The following algorithms are described for a binary tree, but they may be generalized to other trees as well.

In computational complexity theory, SL is the complexity class of problems log-space reducible to USTCON, which is the problem of determining whether there exists a path between two vertices in an undirected graph, otherwise described as the problem of determining whether two vertices are in the same connected component. This problem is also called the undirected reachability problem. It does not matter whether many-one reducibility or Turing reducibility is used. Although originally described in terms of symmetric Turing machines, that equivalent formulation is very complex, and the reducibility definition is what is used in practice.

In computer science, corecursion is a type of operation that is dual to recursion. Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case. Put simply, corecursive algorithms use the data that they themselves produce, bit by bit, as they become available, and needed, to produce further bits of data. A similar but distinct concept is generative recursion which may lack a definite "direction" inherent in corecursion and recursion.

In computer science, beam search is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited set. Beam search is an optimization of best-first search that reduces its memory requirements. Best-first search is a graph search which orders all partial solutions (states) according to a chosen heuristic. But in beam search, only a predetermined number of best partial solutions are kept as candidates. It is thus a greedy algorithm. Implemented with an unlimited set of candidates, beam search becomes a backtracking algorithm.

In computer science, st-connectivity or STCON is a decision problem asking, for vertices s and t in a directed graph, if t is reachable from s.

<span class="mw-page-title-main">Recursion (computer science)</span> Use of functions that call themselves

In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion is one of the central ideas of computer science.

The power of recursion evidently lies in the possibility of defining an infinite set of objects by a finite statement. In the same manner, an infinite number of computations can be described by a finite recursive program, even if this program contains no explicit repetitions.

In computer science, graph traversal refers to the process of visiting each vertex in a graph. Such traversals are classified by the order in which the vertices are visited. Tree traversal is a special case of graph traversal.

A Turing machine is a hypothetical computing device, first conceived by Alan Turing in 1936. Turing machines manipulate symbols on a potentially infinite strip of tape according to a finite table of rules, and they provide the theoretical underpinnings for the notion of a computer algorithm.

In graph theory, a Trémaux tree of an undirected graph is a type of spanning tree, generalizing depth-first search trees. They are defined by the property that every edge of connects an ancestor–descendant pair in the tree. Trémaux trees are named after Charles Pierre Trémaux, a 19th-century French author who used a form of depth-first search as a strategy for solving mazes. They have also been called normal spanning trees, especially in the context of infinite graphs.