Dual-task paradigm

Last updated

A dual-task paradigm is a procedure in experimental neuropsychology that requires an individual to perform two tasks simultaneously, in order to compare performance with single-task conditions. When performance scores on one and/or both tasks are lower when they are done simultaneously compared to separately, these two tasks interfere with each other, and it is assumed that both tasks compete for the same class of information processing resources in the brain.

For instance, reciting poetry while riding a bike are two tasks that can be performed just as well separately as simultaneously. However, reciting poetry while writing an essay should deteriorate performance on at least one of these two tasks, because they interfere with each other.

The interpretation of dual-task paradigms follows the view that human processing resources are limited and shareable [1] and that they can be subdivided into several classes. [2]

Related Research Articles

<span class="mw-page-title-main">Process (computing)</span> Particular execution of a computer program

In computing, a process is the instance of a computer program that is being executed by one or many threads. There are many different process models, some of which are light weight, but almost all processes are rooted in an operating system (OS) process which comprises the program code, assigned system resources, physical and logical access permissions, and data structures to initiate, control and coordinate execution activity. Depending on the OS, a process may be made up of multiple threads of execution that execute instructions concurrently.

<span class="mw-page-title-main">Thread (computing)</span> Smallest sequence of programmed instructions that can be managed independently by a scheduler

In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process.

<span class="mw-page-title-main">Attention</span> Psychological process of selectively perceiving and prioritising discrete aspects of information

Attention is the concentration of awareness on some phenomenon to the exclusion of other stimuli. It is a process of selectively concentrating on a discrete aspect of information, whether considered subjective or objective. William James (1890) wrote that "Attention is the taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thought. Focalization, concentration, of consciousness are of its essence." Attention has also been described as the allocation of limited cognitive processing resources. Attention is manifested by an attentional bottleneck, in terms of the amount of data the brain can process each second; for example, in human vision, only less than 1% of the visual input data can enter the bottleneck, leading to inattentional blindness.

<span class="mw-page-title-main">Hyper-threading</span> Proprietary simultaneous multithreading implementation by Intel

Hyper-threading is Intel's proprietary simultaneous multithreading (SMT) implementation used to improve parallelization of computations performed on x86 microprocessors. It was introduced on Xeon server processors in February 2002 and on Pentium 4 desktop processors in November 2002. Since then, Intel has included this technology in Itanium, Atom, and Core 'i' Series CPUs, among others.

Simultaneous multithreading (SMT) is a technique for improving the overall efficiency of superscalar CPUs with hardware multithreading. SMT permits multiple independent threads of execution to better use the resources provided by modern processor architectures.

The interference theory is a theory regarding human memory. Interference occurs in learning. The notion is that memories encoded in long-term memory (LTM) are forgotten and cannot be retrieved into short-term memory (STM) because either memory could interfere with the other. There is an immense number of encoded memories within the storage of LTM. The challenge for memory retrieval is recalling the specific memory and working in the temporary workspace provided in STM. Retaining information regarding the relevant time of encoding memories into LTM influences interference strength. There are two types of interference effects: proactive and retroactive interference.

The term workload can refer to several different yet related entities.

<span class="mw-page-title-main">Cocktail party effect</span> Ability of the brain to focus on a single auditory stimulus by filtering out background noise

The cocktail party effect refers to the phenomenon wherein the brain focuses a person's attention on a particular stimulus, usually auditory. This focus excludes a range of other stimuli from conscious awareness, as when a partygoer follows a single conversation in a noisy room. This ability is widely distributed among humans, with most listeners more or less easily able to portion the totality of sound detected by the ears into distinct streams, and subsequently to decide which streams are most pertinent, excluding all or most others.

Artificial grammar learning (AGL) is a paradigm of study within cognitive psychology and linguistics. Its goal is to investigate the processes that underlie human language learning by testing subjects' ability to learn a made-up grammar in a laboratory setting. It was developed to evaluate the processes of human language learning but has also been utilized to study implicit learning in a more general sense. The area of interest is typically the subjects' ability to detect patterns and statistical regularities during a training phase and then use their new knowledge of those patterns in a testing phase. The testing phase can either use the symbols or sounds used in the training phase or transfer the patterns to another set of symbols or sounds as surface structure.

<span class="mw-page-title-main">Multithreading (computer architecture)</span> Ability of a CPU to provide multiple threads of execution concurrently

In computer architecture, multithreading is the ability of a central processing unit (CPU) to provide multiple threads of execution concurrently, supported by the operating system. This approach differs from multiprocessing. In a multithreaded application, the threads share the resources of a single or multiple cores, which include the computing units, the CPU caches, and the translation lookaside buffer (TLB).

<span class="mw-page-title-main">Human multitasking</span> Ability to perform activities simultaneously

Human multitasking is the concept that one can split their attention on more than one task or activity at the same time, such as speaking on the phone while driving a car. Multitasking can result in time wasted due to human context switching and becoming prone to errors due to insufficient attention. If one becomes proficient at two tasks, it is possible to rapidly shift attention between the tasks and perform the tasks well.

Recognition memory, a subcategory of explicit memory, is the ability to recognize previously encountered events, objects, or people. When the previously experienced event is reexperienced, this environmental content is matched to stored memory representations, eliciting matching signals. As first established by psychology experiments in the 1970s, recognition memory for pictures is quite remarkable: humans can remember thousands of images at high accuracy after seeing each only once and only for a few seconds.

Task switching, or set-shifting, is an executive function that involves the ability to unconsciously shift attention between one task and another. In contrast, cognitive shifting is a very similar executive function, but it involves conscious change in attention. Together, these two functions are subcategories of the broader cognitive flexibility concept.

In modern psychology, vigilance, also termed sustained concentration, is defined as the ability to maintain concentrated attention over prolonged periods of time. During this time, the person attempts to detect the appearance of a particular target stimulus. The individual watches for a signal stimulus that may occur at an unknown time.

<span class="mw-page-title-main">P3b</span>

The P3b is a subcomponent of the P300, an event-related potential (ERP) component that can be observed in human scalp recordings of brain electrical activity. The P3b is a positive-going amplitude peaking at around 300 ms, though the peak will vary in latency from 250 to 500 ms or later depending upon the task and on the individual subject response. Amplitudes are typically highest on the scalp over parietal brain areas.

The term psychological refractory period (PRP) refers to the period of time during which the response to a second stimulus is significantly slowed because a first stimulus is still being processed. This delay in response time when one is required to divide attention can exhibit a negative effect that is evident in many fields of study. The PRP can be used to investigate many areas of research that study processes which require divided attention, such as reading aloud, language, or driving and talking on the phone. PRP effects related to personality, age, and level of alcohol or caffeine intake have also been investigated.

Automatic and controlled processes (ACP) are the two categories of cognitive processing. All cognitive processes fall into one or both of those two categories. The amounts of "processing power", attention, and effort a process requires is the primary factor used to determine whether it's a controlled or an automatic process. An automatic process is capable of occurring without the need for attention, and the awareness of the initiation or operation of the process, and without drawing upon general processing resources or interfering with other concurrent thought processes. Put simply, an automatic process is unintentional, involuntary, effortless, and occurring outside awareness. Controlled processes are defined as a process that is under the flexible, intentional control of the individual, that the individual is consciously aware of, and that are effortful and constrained by the amount of attentional resources available at the moment.

The neurocircuitry that underlies executive function processes and emotional and motivational processes are known to be distinct in the brain. However, there are brain regions that show overlap in function between the two cognitive systems. Brain regions that exist in both systems are interesting mainly for studies on how one system affects the other. Examples of such cross-modal functions are emotional regulation strategies such as emotional suppression and emotional reappraisal, the effect of mood on cognitive tasks, and the effect of emotional stimulation of cognitive tasks.

Visual spatial attention is a form of visual attention that involves directing attention to a location in space. Similar to its temporal counterpart visual temporal attention, these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable explanation of deep learning models.

Human performance modeling (HPM) is a method of quantifying human behavior, cognition, and processes. It is a tool used by human factors researchers and practitioners for both the analysis of human function and for the development of systems designed for optimal user experience and interaction. It is a complementary approach to other usability testing methods for evaluating the impact of interface features on operator performance.

References

  1. Kahneman, D. 1973. Attention and effort. Prentice-Hall, New Jersey.
    Navon, D. and Gopher, D. 1979. On the economy of the human-processing system. Psychol. Rev. 86: 214–255.
  2. Wickens, C.D. 1991. Processing resources and attention. In Multiple Task Performance (ed. D.L. Damos), pp. 3–34. Taler & Francis, Ltd., Bristol.