Duct (industrial exhaust)

Last updated

Industrial exhaust ducts are pipe systems that connect hoods to industrial chimneys through other components of exhaust systems like fans, collectors, etc. Ducts are low-pressure pneumatic conveyors to convey dust, particles, shavings, fumes, or chemical hazardous components from air in the vicinity to a shop floor or any other specific locations like tanks, sanding machines, or laboratory hoods. Ducts can be fabricated from a variety of materials including carbon steel, stainless steel, PVC, and fiberglass. [1] They can be fabricated through rolling (preferable for ducts of 12" or more in diameter) or extruded (for ducts up to 18"). [2]

Contents

HVAC systems do not include this category of industrial application, namely exhaust systems. A distinction from HVAC system ducts is that the fluid (air) conveyed through the duct system may not be homogeneous. An industrial exhaust duct system is primarily a pneumatic conveying system and is basically governed by laws of flow of fluids. [3]

Fluid flow

The conveying fluid that flows through the duct system is air. Air transports materials from the hood to a destination. It is also instrumental in capturing the material into the flow system. Air is a compressible fluid, but for engineering calculations, air is considered as incompressible as a simplification, without any significant errors.

Design

Process design of exhaust system will include

The goal is to keep contaminants out using minimum airflow. It is estimated that increase in an inch wg[ clarification needed ] of static pressure can add a few thousands of dollars to the operation cost per annum.

See also

Related Research Articles

<span class="mw-page-title-main">Valve</span> Flow control device

A valve is a device or natural object that regulates, directs or controls the flow of a fluid by opening, closing, or partially obstructing various passageways. Valves are technically fittings, but are usually discussed as a separate category. In an open valve, fluid flows in a direction from higher pressure to lower pressure. The word is derived from the Latin valva, the moving part of a door, in turn from volvere, to turn, roll.

The word duct is derived from the Latin word for led/leading. It may refer to:

<span class="mw-page-title-main">Heating, ventilation, and air conditioning</span> Technology of indoor and vehicular environmental comfort

Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.

<span class="mw-page-title-main">Pneumatics</span> Branch of engineering

Pneumatics is a branch of engineering that makes use of gas or pressurized air.

<span class="mw-page-title-main">Fume hood</span> Type of local ventilation device

A fume hood is a type of local exhaust ventilation device that is designed to limit exposure to hazardous or toxic fumes, vapors or dusts. The device is an enclosure with a movable sash window on one side that traps and exhausts gases and particulates either out of the area or back into the room, and is most frequently used in laboratory settings.

<span class="mw-page-title-main">Hose</span> Flexible hollow tube to carry fluids

A hose is a flexible hollow tube designed to carry fluids from one location to another. Hoses are also sometimes called pipes, or more generally tubing. The shape of a hose is usually cylindrical.

A sound attenuator, or duct silencer, sound trap, or muffler, is a noise control acoustical treatment of Heating Ventilating and Air-Conditioning (HVAC) ductwork designed to reduce transmission of noise through the ductwork, either from equipment into occupied spaces in a building, or between occupied spaces.

A diffuser is "a device for reducing the velocity and increasing the static pressure of a fluid passing through a system”. The fluid's static pressure rise as it passes through a duct is commonly referred to as pressure recovery. In contrast, a nozzle is used to increase the discharge velocity and lower the pressure of a fluid passing through it.

Pressure drop is defined as the difference in total pressure between two points of a fluid carrying network. A pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through a conduit. This friction converts some of the fluid’s hydraulic energy to thermal energy. Since the thermal energy cannot be converted back to hydraulic energy, the fluid experiences a drop in pressure, as is required by conservation of energy.

<span class="mw-page-title-main">Duct (flow)</span> Conduit used in heating, ventilation, and air conditioning

Ducts are conduits or passages used in heating, ventilation, and air conditioning (HVAC) to deliver and remove air. The needed airflows include, for example, supply air, return air, and exhaust air. Ducts commonly also deliver ventilation air as part of the supply air. As such, air ducts are one method of ensuring acceptable indoor air quality as well as thermal comfort.

<span class="mw-page-title-main">Friction loss</span> Loss of fluid or energy or money through friction

The term friction loss has a number of different meanings, depending on its context.

<span class="mw-page-title-main">Rotary feeder</span>

Rotary feeders, also known as rotary airlocks or rotary valves, are commonly used in industrial and agricultural applications as a component in a bulk or specialty material handling system. Rotary feeders are primarily used for discharge of bulk solid material from hoppers/bins, receivers, and cyclones into a pressure or vacuum-driven pneumatic conveying system. Components of a rotary feeder include a rotor shaft, housing, head plates, and packing seals and bearings. Rotors have large vanes cast or welded on and are typically driven by small internal combustion engines or electric motors.

<span class="mw-page-title-main">Centrifugal fan</span> Mechanical fan that forces fluid to move radially outward

A centrifugal fan is a mechanical device for moving air or other gases in a direction at an angle to the incoming fluid. Centrifugal fans often contain a ducted housing to direct outgoing air in a specific direction or across a heat sink; such a fan is also called a blower, blower fan, or squirrel-cage fan. Tiny ones used in computers are sometimes called biscuit blowers. These fans move air from the rotating inlet of the fan to an outlet. They are typically used in ducted applications to either draw air through ductwork/heat exchanger, or push air through similar impellers. Compared to standard axial fans, they can provide similar air movement from a smaller fan package, and overcome higher resistance in air streams.

<span class="mw-page-title-main">Conveyor system</span> Equipment used for conveying materials

A conveyor system is a common piece of mechanical handling equipment that moves materials from one location to another. Conveyors are especially useful in applications involving the transport of heavy or bulky materials. Conveyor systems allow quick and efficient transport for a wide variety of materials, which make them very popular in the material handling and packaging industries. They also have popular consumer applications, as they are often found in supermarkets and airports, constituting the final leg of item/ bag delivery to customers. Many kinds of conveying systems are available and are used according to the various needs of different industries. There are chain conveyors as well. Chain conveyors consist of enclosed tracks, I-Beam, towline, power & free, and hand pushed trolleys.

Industrial fans and blowers are machines whose primary function is to provide and accommodate a large flow of air or gas to various parts of a building or other structures. This is achieved by rotating a number of blades, connected to a hub and shaft, and driven by a motor or turbine. The flow rates of these mechanical fans range from approximately 200 cubic feet (5.7 m3) to 2,000,000 cubic feet (57,000 m3) per minute. A blower is another name for a fan that operates where the resistance to the flow is primarily on the downstream side of the fan.

HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

<span class="mw-page-title-main">Duct leakage testing</span>

A duct leakage tester is a diagnostic tool designed to measure the airtightness of forced air heating, ventilating and air-conditioning (HVAC) ductwork. A duct leakage tester consists of a calibrated fan for measuring an air flow rate and a pressure sensing device to measure the pressure created by the fan flow. The combination of pressure and fan flow measurements are used to determine the ductwork airtightness. The airtightness of ductwork is useful knowledge when trying to improve energy conservation.

Airflow, or air flow, is the movement of air. The primary cause of airflow is the existence of air. Air behaves in a fluid manner, meaning particles naturally flow from areas of higher pressure to those where the pressure is lower. Atmospheric air pressure is directly related to altitude, temperature, and composition.

Oxygen compatibility is the issue of compatibility of materials for service in high concentrations of oxygen. It is a critical issue in space, aircraft, medical, underwater diving and industrial applications. Aspects include effects of increased oxygen concentration on the ignition and burning of materials and components exposed to these concentrations in service.

<span class="mw-page-title-main">Engineering controls for nanomaterials</span>

Engineering controls for nanomaterials are a set of hazard control methods and equipment for workers who interact with nanomaterials. Engineering controls are physical changes to the workplace that isolate workers from hazards, and are considered the most important set of methods for controlling the health and safety hazards of nanomaterials after systems and facilities have been designed.

References

  1. Duct Work Assembly Archived 2020-02-24 at the Wayback Machine U.S. Bellows, (retrieved May 2012)
  2. KCH Engineered Systems
  3. Archived 2015-09-19 at the Wayback Machine ASHRAE Technical Committee 5.2 - Duct Design
  4. Archived 2017-02-20 at the Wayback Machine Industrial Duct System Design Fundamentals