Duochrome test

Last updated
Duochrome Test.jpg

A duochrome test is a test commonly used to refine the final sphere in refraction (undercorrection and overcorrection), which makes use of the longitudinal chromatic aberration of the eye. Because of the chromatic aberration of the eye, the shorter wavelengths (green) are focused in front of the longer red wavelengths. It is assumed that best vision is attained when the yellow wavelengths are focused on the retina. [1]

Contents

Testing

The patient is asked to compare the clarity of the letters on the green and the red side. If the letters of the green side are clearer +0.25 D sphere is added and if the letters on the red side are clearer -0.25 D sphere is added. With optimal spherical correction, the letters on the red and green halves of the chart appear equally clear.

Because this test is based on chromatic aberration and not on color discrimination, it is used even with people having color vision deficiency. [2]

The eye with overactive accommodation may still require too much minus sphere in order to balance the red and green. Cycloplegia may be necessary.

The duochrome test is not used with patients whose visual acuity is worse than 20/30 (6/9), because the 0.50 D difference between the two sides is too small to distinguish.

See also

Related Research Articles

<span class="mw-page-title-main">Optical aberration</span> Deviation from perfect paraxial optical behavior

In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.

<span class="mw-page-title-main">Lens</span> Optical device which transmits and refracts light

A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic and are ground, polished, or molded to the required shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called "lenses", such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

<span class="mw-page-title-main">Chromatic aberration</span> Failure of a lens to focus all colors on the same point

In optics, chromatic aberration (CA), also called chromatic distortion and spherochromatism, is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the lens elements varies with the wavelength of light. The refractive index of most transparent materials decreases with increasing wavelength. Since the focal length of a lens depends on the refractive index, this variation in refractive index affects focusing. Chromatic aberration manifests itself as "fringes" of color along boundaries that separate dark and bright parts of the image.

<span class="mw-page-title-main">Corrective lens</span> Type of lens to improve visual perception

A corrective lens is a transmissive optical device that is worn on the eye to improve visual perception. The most common use is to treat refractive errors: myopia, hypermetropia, astigmatism, and presbyopia. Glasses or "spectacles" are worn on the face a short distance in front of the eye. Contact lenses are worn directly on the surface of the eye. Intraocular lenses are surgically implanted most commonly after cataract removal but can be used for purely refractive purposes.

<span class="mw-page-title-main">Achromatic lens</span> Lens that is designed to limit the effects of chromatic and spherical aberration

An achromatic lens or achromat is a lens that is designed to limit the effects of chromatic and spherical aberration. Achromatic lenses are corrected to bring two wavelengths into focus on the same plane. Wavelengths in between these two then have better focus error than could be obtained with a simple lens.

<span class="mw-page-title-main">Refracting telescope</span> Type of optical telescope

A refracting telescope is a type of optical telescope that uses a lens as its objective to form an image. The refracting telescope design was originally used in spyglasses and astronomical telescopes but is also used for long-focus camera lenses. Although large refracting telescopes were very popular in the second half of the 19th century, for most research purposes, the refracting telescope has been superseded by the reflecting telescope, which allows larger apertures. A refractor's magnification is calculated by dividing the focal length of the objective lens by that of the eyepiece.

<span class="mw-page-title-main">Eyeglass prescription</span> Order written by an eyewear prescriber

An eyeglass prescription is an order written by an eyewear prescriber, such as an optometrist, that specifies the value of all parameters the prescriber has deemed necessary to construct and/or dispense corrective lenses appropriate for a patient. If an eye examination indicates that corrective lenses are appropriate, the prescriber generally provides the patient with an eyewear prescription at the conclusion of the exam.

<span class="mw-page-title-main">Astigmatism (optical systems)</span> Optical aberration

An optical system with astigmatism is one where rays that propagate in two perpendicular planes have different foci. If an optical system with astigmatism is used to form an image of a cross, the vertical and horizontal lines will be in sharp focus at two different distances. The term comes from the Greek α- (a-) meaning "without" and στίγμα (stigma), "a mark, spot, puncture".

<span class="mw-page-title-main">Apochromat</span>

An apochromat, or apochromatic lens (apo), is a photographic or other lens that has better correction of chromatic and spherical aberration than the much more common achromat lenses.

The science of photography is the use of chemistry and physics in all aspects of photography. This applies to the camera, its lenses, physical operation of the camera, electronic camera internals, and the process of developing film in order to take and develop pictures properly.

A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components. When this model is associated with a precise description of how the components are to be interpreted, taking account of visual perception, the resulting set of colors is called "color space."

<span class="mw-page-title-main">Phoropter</span> Ophthalmic testing device

A phoropter or refractor is an ophthalmic testing device. It is commonly used by eye care professionals during an eye examination, and contains different lenses used for refraction of the eye during sight testing, to measure an individual's refractive error and determine their eyeglass prescription. It also is used to measure the patients' phorias and ductions, which are characteristics of binocularity.

<span class="mw-page-title-main">Defocus aberration</span> Quality of an image being out of focus

In optics, defocus is the aberration in which an image is simply out of focus. This aberration is familiar to anyone who has used a camera, videocamera, microscope, telescope, or binoculars. Optically, defocus refers to a translation of the focus along the optical axis away from the detection surface. In general, defocus reduces the sharpness and contrast of the image. What should be sharp, high-contrast edges in a scene become gradual transitions. Fine detail in the scene is blurred or even becomes invisible. Nearly all image-forming optical devices incorporate some form of focus adjustment to minimize defocus and maximize image quality.

<span class="mw-page-title-main">Achromatic telescope</span> A refracting telescope design that reduces cromatic aberration

The achromatic telescope is a refracting telescope that uses an achromatic lens to correct for chromatic aberration.

<span class="mw-page-title-main">Underwater vision</span> The ability to see objects underwater

Underwater vision is the ability to see objects underwater, and this is significantly affected by several factors. Underwater, objects are less visible because of lower levels of natural illumination caused by rapid attenuation of light with distance passed through the water. They are also blurred by scattering of light between the object and the viewer, also resulting in lower contrast. These effects vary with wavelength of the light, and color and turbidity of the water. The vertebrate eye is usually either optimised for underwater vision or air vision, as is the case in the human eye. The visual acuity of the air-optimised eye is severely adversely affected by the difference in refractive index between air and water when immersed in direct contact. Provision of an airspace between the cornea and the water can compensate, but has the side effect of scale and distance distortion. The diver learns to compensate for these distortions. Artificial illumination is effective to improve illumination at short range.

<span class="mw-page-title-main">Chromostereopsis</span> Visual illusion whereby the impression of depth is conveyed in two-dimensional color images

Chromostereopsis is a visual illusion whereby the impression of depth is conveyed in two-dimensional color images, usually of red–blue or red–green colors, but can also be perceived with red–grey or blue–grey images. Such illusions have been reported for over a century and have generally been attributed to some form of chromatic aberration.

Low-dispersion glass is a type of glass with a reduction in chromatic aberration. Crown glass is an example of a relatively inexpensive low-dispersion glass.

The eye, like any other optical system, suffers from a number of specific optical aberrations. The optical quality of the eye is limited by optical aberrations, diffraction and scatter. Correction of spherocylindrical refractive errors has been possible for nearly two centuries following Airy's development of methods to measure and correct ocular astigmatism. It has only recently become possible to measure the aberrations of the eye and with the advent of refractive surgery it might be possible to correct certain types of irregular astigmatism.

<span class="mw-page-title-main">Subjective refraction</span> Technique to determine the combination of lenses that will provide the best corrected visual acuity

Subjective Refraction is a technique to determine the combination of lenses that will provide the best corrected visual acuity (BCVA). It is a clinical examination used by orthoptists, optometrists and ophthalmologists to determine a patient's need for refractive correction, in the form of glasses or contact lenses. The aim is to improve current unaided vision or vision with current glasses. Glasses must also be comfortable visually. The sharpest final refraction is not always the final script the patient wears comfortably.

<span class="mw-page-title-main">Jackson cross cylinder</span> Ophthalmic instrument

The Jackson cross cylinder (JCC) is an instrument used by ophthalmologists, orthoptists and optometrists in their routine eye examination, particularly in determination of corrective lens power in patients with astigmatism. It is also used for testing near point of the eye.

References

  1. Gantz, Liat; Schrader, Shlomo; Ruben, Ruthie; Zivotofsky, Ari Z. (2015-03-16). "Can the Red-Green Duochrome Test Be Used Prior to Correcting the Refractive Cylinder Component?". PLoS ONE. 10 (3): e0118874. doi:10.1371/journal.pone.0118874. ISSN   1932-6203. PMC   4361575 . PMID   25775478.
  2. Makgaba, Nkalebetja T.; Mathebula, Solani D. (2020-09-30). "Investigation of the unfused cross cylinder test as an alternative method for the determination of spherical distance refraction end points". African Vision and Eye Health. 79 (1). doi: 10.4102/aveh.v79i1.514 . ISSN   2410-1516. S2CID   224991918.
  3. Myron Yanoff, Jay S. Duker (2009). Ophthalmology (3rd ed.). Mosby Elsevier. p. 67. ISBN   9780323043328.