Dynamic Delegation Discovery System

Last updated

The Dynamic Delegation Discovery System (DDDS) is an algorithm for applying string transformation rules to application-unique strings to extract specific syntax elements. It is used for finding information, such as authoritative domain name servers, for Uniform Resource Identifiers and Uniform Resource Names. An earlier specification applied only to URNs, and was called the Resolver Discovery Service (RDS).

DDDS defines a mechanism for using the Domain Name System (DNS) as the database for arbitrary identifier schemes. The primary logical DNS container used to hold DDDS information is the NAPTR record.

DDDS is defined in RFC 3401, RFC 3402, RFC 3403, RFC 3404, and RFC 3405.

RFC 3401 expresses the system as follows: [1]

The Dynamic Delegation Discovery System is used to implement lazy binding of strings to data, in order to support dynamically configured delegation systems. The DDDS functions by mapping some unique string to data stored within a DDDS Database by iteratively applying string transformation rules until a terminal condition is reached.

Telephone Number Mapping (ENUM), specified in RFC 6116, is defined as a DDDS application to resolve telephone numbers into DNS data.

Related Research Articles

The Domain Name System (DNS) is the hierarchical and decentralized naming system used to identify computers, services, and other resources reachable through the internet or other internet protocol networks. The resource records contained in the DNS associate domain names with other forms of information. These are most commonly used to map human-friendly domain names to the numerical IP addresses computers need to locate services and devices using the underlying network protocols, but have been extended over time to perform many other functions as well. The Domain Name System has been an essential component of the functionality of the Internet since 1985.

A top-level domain (TLD) is one of the domains at the highest level in the hierarchical Domain Name System of the Internet after the root domain. The top-level domain names are installed in the root zone of the name space. For all domains in lower levels, it is the last part of the domain name, that is, the last non empty label of a fully qualified domain name. For example, in the domain name www.example.com., the top-level domain is com. Responsibility for management of most top-level domains is delegated to specific organizations by the ICANN an Internet multi-stakeholder community, which operates the Internet Assigned Numbers Authority (IANA), and is in charge of maintaining the DNS root zone.

A Uniform Resource Identifier (URI) is a unique sequence of characters that identifies a logical or physical resource used by web technologies. URIs may be used to identify anything, including real-world objects, such as people and places, concepts, or information resources such as web pages and books. Some URIs provide a means of locating and retrieving information resources on a network ; these are Uniform Resource Locators (URLs). A URL provides the location of the resource. A URI identifies the resource by name at the specified location or URL. Other URIs provide only a unique name, without a means of locating or retrieving the resource or information about it, these are Uniform Resource Names (URNs). The web technologies that use URIs are not limited to web browsers. URIs are used to identify anything described using the Resource Description Framework (RDF), for example, concepts that are part of an ontology defined using the Web Ontology Language (OWL), and people who are described using the Friend of a Friend vocabulary would each have an individual URI.

A name server refers to the server component of the Domain Name System (DNS), one of the two principal namespaces of the Internet. The most important function of DNS servers is the translation (resolution) of human-memorable domain names (example.com) and hostnames into the corresponding numeric Internet Protocol (IP) addresses (93.184.216.34), the second principal name space of the Internet, which is used to identify and locate computer systems and resources on the Internet.

Telephone number mapping is a system of unifying the international telephone number system of the public switched telephone network with the Internet addressing and identification name spaces. Internationally, telephone numbers are systematically organized by the E.164 standard, while the Internet uses the Domain Name System (DNS) for linking domain names to IP addresses and other resource information. Telephone number mapping systems provide facilities to determine applicable Internet communications servers responsible for servicing a given telephone number using DNS queries.

Zero-configuration networking (zeroconf) is a set of technologies that automatically creates a usable computer network based on the Internet Protocol Suite (TCP/IP) when computers or network peripherals are interconnected. It does not require manual operator intervention or special configuration servers. Without zeroconf, a network administrator must set up network services, such as Dynamic Host Configuration Protocol (DHCP) and Domain Name System (DNS), or configure each computer's network settings manually.

A Uniform Resource Name (URN) is a Uniform Resource Identifier (URI) that uses the urn scheme. URNs are globally unique persistent identifiers assigned within defined namespaces so they will be available for a long period of time, even after the resource which they identify ceases to exist or becomes unavailable. URNs cannot be used to directly locate an item and need not be resolvable, as they are simply templates that another parser may use to find an item.

The Domain Name System Security Extensions (DNSSEC) is a suite of extension specifications by the Internet Engineering Task Force (IETF) for securing data exchanged in the Domain Name System (DNS) in Internet Protocol (IP) networks. The protocol provides cryptographic authentication of data, authenticated denial of existence, and data integrity, but not availability or confidentiality.

Fully qualified domain name

A fully qualified domain name (FQDN), sometimes also referred to as an absolute domain name, is a domain name that specifies its exact location in the tree hierarchy of the Domain Name System (DNS). It specifies all domain levels, including the top-level domain and the root zone. A fully qualified domain name is distinguished by its lack of ambiguity: it can be interpreted only in one way. It usually consists of a host name and at least one higher-level domain (label) separated by the symbol "." and always ends in the top-level domain.

The domain name arpa is a top-level domain (TLD) in the Domain Name System (DNS) of the Internet. It is used predominantly for the management of technical network infrastructure. Prominent among such functions are the subdomains in-addr.arpa and ip6.arpa, which provide namespaces for reverse DNS lookup of IPv4 and IPv6 addresses, respectively.

In computer networks, a reverse DNS lookup or reverse DNS resolution (rDNS) is the querying technique of the Domain Name System (DNS) to determine the domain name associated with an IP address – the reverse of the usual "forward" DNS lookup of an IP address from a domain name. The process of reverse resolving of an IP address uses PTR records. rDNS involves searching domain name registry and registrar tables. This may be used to try to identify the originator’s domain name to track, for example, a spammer sending spam emails or the domain name of a computer trying to break into a firewall or someone trying to hack the system. It may also be used to determine the name of the internet service provider assigned to a particular IP address. The reverse DNS database of the Internet is rooted in the .arpa top-level domain.

DNS zone Part of the Internets Domain Name System (DNS) organization system

A DNS zone is a specific portion of the DNS namespace in the Domain Name System (DNS), which is managed by a specific organization or administrator. A DNS zone is an administrative space that allows for more granular control of the DNS components, such as authoritative nameserver. The DNS is broken up into many different zones, which are distinctly managed areas in the DNS namespace. DNS zones are not necessarily physically separated from one another, however, a DNS zone can contain multiple subdomains and multiple zones can exist on the same server.

A Name Authority Pointer (NAPTR) is a type of resource record in the Domain Name System of the Internet.

The Dynamic Host Configuration Protocol version 6 (DHCPv6) is a network protocol for configuring Internet Protocol version 6 (IPv6) hosts with IP addresses, IP prefixes and other configuration data required to operate in an IPv6 network. It is the IPv6 equivalent of the Dynamic Host Configuration Protocol for IPv4. DHCPv6 is defined by RFC 8415.

Michael Mealling

Michael Mealling is co-founder of Pipefish Inc, and was the cofounder, Chief Financial Officer (CFO) and Vice President of Business Development of Masten Space Systems, CEO of Refactored Networks, long time participant within the IETF, a Space Frontier Foundation Advocate, and a former Director of the Moon Society. He operates a blog site called Rocketforge and has been interviewed twice on The Space Show and twice on SpaceVidcast.

The Handle System is the Corporation for National Research Initiatives's proprietary registry assigning persistent identifiers, or handles, to information resources, and for resolving "those handles into the information necessary to locate, access, and otherwise make use of the resources".

IPv6 address Label to identify a network interface of a computer or other network node

An Internet Protocol Version 6 address is a numeric label that is used to identify and locate a network interface of a computer or a network node participating in an computer network using IPv6. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks.

The NRENum.net service is an end-user ENUM service run by TERENA and the participating national research and education networking organisations (NRENs), primarily for academia. NRENum.net is considered as a complementary service and a valid alternative to the Golden ENUM tree. The domain nrenum.net is being populated in order to provide the infrastructure in DNS for storage of E.164 numbers. The NRENum.net service includes the operation of the Tier-0 root Domain Name Server(s) and the delegation of county codes to NRENum.net Registries. NRENum.net is a registered community trademark of TERENA.

A TXT record is a type of resource record in the Domain name system (DNS) used to provide the ability to associate arbitrary text with a host or other name, such as human readable information about a server, network, data center, or other accounting information.

A Uniform Resource Locator (URL), colloquially termed a web address, is a reference to a web resource that specifies its location on a computer network and a mechanism for retrieving it. A URL is a specific type of Uniform Resource Identifier (URI), although many people use the two terms interchangeably. URLs occur most commonly to reference web pages (http) but are also used for file transfer (ftp), email (mailto), database access (JDBC), and many other applications.

References

  1. RFC 3401, M. Mealling, Dynamic Delegation Discovery System (DDDS), IETF (October 2002)